Work-in-Progress: A Scalable Stochastic Number Generator for Phase Change Memory Based In-Memory Stochastic Processing

Supreeth Mysore Shivanandamurthy, Ishan G. Thakkar, S. A. Salehi
{"title":"Work-in-Progress: A Scalable Stochastic Number Generator for Phase Change Memory Based In-Memory Stochastic Processing","authors":"Supreeth Mysore Shivanandamurthy, Ishan G. Thakkar, S. A. Salehi","doi":"10.1145/3349567.3351717","DOIUrl":null,"url":null,"abstract":"Stochastic computing based Processing-In-Memory (PIM) architectures (e.g., [1]) can provide massive parallelism with higher energy-efficiency, for implementing complex computations in main memory. However, stochastic computing arithmetic requires random bit streams generated by stochastic number generators (SNGs), which account for significant area and energy consumption. Moreover, SNGs' numerical precision needs improvement to reduce errors in stochastic computations [1]. Thus, low numerical precision and high implementation overheads of SNGs can offset the benefits of adopting stochastic computing in PIM architectures. In this paper, we exploit the inherent stochasticity of Phase Change Memory (PCM) cells to design a scalable and area-energy efficient SNG for PCM-based stochastic PIM architectures. Our designed SNG can achieve up to ~300× lower area and up to ~250× lower energy consumption with better numerical precision, compared to the Linear Feedback Shift Register (LFSR) based conventional SNG from [2].","PeriodicalId":194982,"journal":{"name":"2019 International Conference on Hardware/Software Codesign and System Synthesis (CODES+ISSS)","volume":"222 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Hardware/Software Codesign and System Synthesis (CODES+ISSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3349567.3351717","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Stochastic computing based Processing-In-Memory (PIM) architectures (e.g., [1]) can provide massive parallelism with higher energy-efficiency, for implementing complex computations in main memory. However, stochastic computing arithmetic requires random bit streams generated by stochastic number generators (SNGs), which account for significant area and energy consumption. Moreover, SNGs' numerical precision needs improvement to reduce errors in stochastic computations [1]. Thus, low numerical precision and high implementation overheads of SNGs can offset the benefits of adopting stochastic computing in PIM architectures. In this paper, we exploit the inherent stochasticity of Phase Change Memory (PCM) cells to design a scalable and area-energy efficient SNG for PCM-based stochastic PIM architectures. Our designed SNG can achieve up to ~300× lower area and up to ~250× lower energy consumption with better numerical precision, compared to the Linear Feedback Shift Register (LFSR) based conventional SNG from [2].
一种基于内存随机处理的可扩展相变存储器随机数字发生器
基于随机计算的内存处理(PIM)架构(例如,[1])可以提供具有更高能效的大规模并行性,用于在主存中实现复杂的计算。然而,随机计算算法需要随机数字发生器(sng)产生随机比特流,这占用了大量的面积和能量。此外,SNGs的数值精度需要提高,以减少随机计算中的误差[1]。因此,较低的数值精度和较高的实现开销会抵消在PIM架构中采用随机计算的好处。在本文中,我们利用相变存储器(PCM)单元的固有随机性,为基于PCM的随机PIM架构设计了一种可扩展且面积节能的SNG。与文献[2]中基于线性反馈移位寄存器(LFSR)的传统制煤装置相比,我们设计的制煤装置面积可降低约300倍,能耗可降低约250倍,数值精度更高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信