{"title":"Fault tolerant energy aware data dissemination protocol in sensor networks","authors":"G. Khanna, S. Bagchi, Yu-Sung Wu","doi":"10.1109/DSN.2004.1311950","DOIUrl":null,"url":null,"abstract":"In this paper we present a data dissemination protocol for efficiently distributing data through a sensor network in the face of node and link failures. Our work is motivated by the SPIN protocol which uses metadata negotiation to minimize data transmissions. We propose a protocol called shortest path minded SPIN (SPMS) in which every node has a zone defined by its maximum transmission radius. A data source node advertises the availability of data to all the nodes in its zone. Any interested node requests the data and gets sent the data using multi-hop communication via the shortest path. The failure of any node in the path is detected and recovered using backup routes. We build simulation models to compare SPMS against SPIN. The simulation results show that SPMS reduces the delay over 10 times and consumes 30% less energy in the static failure free scenario. Even with the addition of mobility, SPMS outperforms SPIN by energy gains between 5% and 21%. An analytical model is also constructed to compare the two protocols under a simplified topology.","PeriodicalId":436323,"journal":{"name":"International Conference on Dependable Systems and Networks, 2004","volume":"87 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"76","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Dependable Systems and Networks, 2004","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DSN.2004.1311950","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 76
Abstract
In this paper we present a data dissemination protocol for efficiently distributing data through a sensor network in the face of node and link failures. Our work is motivated by the SPIN protocol which uses metadata negotiation to minimize data transmissions. We propose a protocol called shortest path minded SPIN (SPMS) in which every node has a zone defined by its maximum transmission radius. A data source node advertises the availability of data to all the nodes in its zone. Any interested node requests the data and gets sent the data using multi-hop communication via the shortest path. The failure of any node in the path is detected and recovered using backup routes. We build simulation models to compare SPMS against SPIN. The simulation results show that SPMS reduces the delay over 10 times and consumes 30% less energy in the static failure free scenario. Even with the addition of mobility, SPMS outperforms SPIN by energy gains between 5% and 21%. An analytical model is also constructed to compare the two protocols under a simplified topology.