Robust video segment proposals with painless occlusion handling

Zhengyang Wu, Fuxin Li, R. Sukthankar, James M. Rehg
{"title":"Robust video segment proposals with painless occlusion handling","authors":"Zhengyang Wu, Fuxin Li, R. Sukthankar, James M. Rehg","doi":"10.1109/CVPR.2015.7299047","DOIUrl":null,"url":null,"abstract":"We propose a robust algorithm to generate video segment proposals. The proposals generated by our method can start from any frame in the video and are robust to complete occlusions. Our method does not assume specific motion models and even has a limited capability to generalize across videos. We build on our previous least squares tracking framework, where image segment proposals are generated and tracked using learned appearance models. The innovation in our new method lies in the use of two efficient moves, the merge move and free addition, to efficiently start segments from any frame and track them through complete occlusions, without much additional computation. Segment size interpolation is used for effectively detecting occlusions. We propose a new metric for evaluating video segment proposals on the challenging VSB-100 benchmark and present state-of-the-art results. Preliminary results are also shown for the potential use of our framework to track segments across different videos.","PeriodicalId":444472,"journal":{"name":"2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"37","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2015.7299047","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 37

Abstract

We propose a robust algorithm to generate video segment proposals. The proposals generated by our method can start from any frame in the video and are robust to complete occlusions. Our method does not assume specific motion models and even has a limited capability to generalize across videos. We build on our previous least squares tracking framework, where image segment proposals are generated and tracked using learned appearance models. The innovation in our new method lies in the use of two efficient moves, the merge move and free addition, to efficiently start segments from any frame and track them through complete occlusions, without much additional computation. Segment size interpolation is used for effectively detecting occlusions. We propose a new metric for evaluating video segment proposals on the challenging VSB-100 benchmark and present state-of-the-art results. Preliminary results are also shown for the potential use of our framework to track segments across different videos.
具有无痛遮挡处理的鲁棒视频片段建议
我们提出了一种鲁棒算法来生成视频片段建议。该方法生成的建议可以从视频中的任何帧开始,并且对完全遮挡具有鲁棒性。我们的方法不假设特定的运动模型,甚至在视频中泛化的能力有限。我们建立在之前的最小二乘跟踪框架的基础上,其中使用学习的外观模型生成和跟踪图像片段建议。我们的新方法的创新之处在于使用了两种有效的移动,合并移动和自由加法,可以有效地从任何帧开始分段并通过完全遮挡跟踪它们,而不需要额外的计算。采用分段大小插值法有效检测遮挡。我们提出了一个新的指标来评估视频片段提案在具有挑战性的VSB-100基准和目前最先进的结果。初步结果还显示了我们的框架在不同视频中跟踪片段的潜在用途。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信