DIDIM-CLIE method for dynamic parameter identification of flexible joint robots

A. Jubien, M. Gautier, A. Janot
{"title":"DIDIM-CLIE method for dynamic parameter identification of flexible joint robots","authors":"A. Jubien, M. Gautier, A. Janot","doi":"10.1109/AIM.2015.7222536","DOIUrl":null,"url":null,"abstract":"This paper deals with a new CLIE (Closed Loop Input Error) method for dynamic identification of flexible joint robots. This is a straightforward extension of the DIDIM (Direct and Inverse Dynamic Identification Models) method from rigid robots to flexible joint robots. DIDIM is a fast closed loop input error method which minimizes the quadratic error between the actual motor force/torque (the control input) and the simulated one. This method which does need neither joint position, nor velocity nor acceleration is particularly attractive to identify flexible manipulators where data of flexible degree of freedom are not available at all. This paper shows how to easily choose good initial values based on mechanical design of joint transmission to apply DIDIM method to flexible joint manipulators. This is a dramatic improvement of our former three-step method which allows a one-step procedure with faster convergence thanks to the clever initialization. An experimental validation on a flexible joint robot and a comparison with the previous three-step procedure shows the effectiveness of the new method.","PeriodicalId":199432,"journal":{"name":"2015 IEEE International Conference on Advanced Intelligent Mechatronics (AIM)","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Advanced Intelligent Mechatronics (AIM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AIM.2015.7222536","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper deals with a new CLIE (Closed Loop Input Error) method for dynamic identification of flexible joint robots. This is a straightforward extension of the DIDIM (Direct and Inverse Dynamic Identification Models) method from rigid robots to flexible joint robots. DIDIM is a fast closed loop input error method which minimizes the quadratic error between the actual motor force/torque (the control input) and the simulated one. This method which does need neither joint position, nor velocity nor acceleration is particularly attractive to identify flexible manipulators where data of flexible degree of freedom are not available at all. This paper shows how to easily choose good initial values based on mechanical design of joint transmission to apply DIDIM method to flexible joint manipulators. This is a dramatic improvement of our former three-step method which allows a one-step procedure with faster convergence thanks to the clever initialization. An experimental validation on a flexible joint robot and a comparison with the previous three-step procedure shows the effectiveness of the new method.
柔性关节机器人动态参数辨识的DIDIM-CLIE方法
提出了一种用于柔性关节机器人动态辨识的闭环输入误差法。这是DIDIM(正逆动态识别模型)方法从刚性机器人向柔性关节机器人的直接推广。DIDIM是一种快速闭环输入误差方法,它使实际电机力/转矩(控制输入)与模拟输入之间的二次误差最小。该方法既不需要关节位置,也不需要速度和加速度,对于无法获得柔性自由度数据的柔性机械臂的辨识尤其具有吸引力。本文介绍了如何在关节传动机械设计的基础上,方便地选择良好的初始值,将DIDIM方法应用于柔性关节机械臂。这是对我们以前的三步方法的一个巨大改进,由于巧妙的初始化,一步过程可以更快地收敛。在一个柔性关节机器人上进行了实验验证,并与之前的三步法进行了比较,结果表明了新方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信