Comparing different approaches for model parameters identification in short time

Linghan Li, B. Kanning, C. Schenck, B. Kuhfuss
{"title":"Comparing different approaches for model parameters identification in short time","authors":"Linghan Li, B. Kanning, C. Schenck, B. Kuhfuss","doi":"10.1109/ISSPIT.2011.6151600","DOIUrl":null,"url":null,"abstract":"Model Parameter values of machine tools change during machining. An optimal process control needs precise knowledge of the actual parameter values. Three different algorithms are introduced to estimate the modal parameter values of system in a short time window with high resolution: least squares estimation (LSE), estimation of signal parameters via rotational invariance (ESPRIT) and orthogonal matching pursuits (OMP) algorithm. These algorithms are augmented with a sliding-window operation to reveal the actual system dynamic behavior at every time instance. This paper focuses on comparing the performance and the identification accuracy of the proposed methods and the influence of the applied window size and noise content using numerical examinations. The results show that the sliding-window LSE can estimate transient parameters accurately and suits realtime control processes.","PeriodicalId":288042,"journal":{"name":"2011 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSPIT.2011.6151600","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Model Parameter values of machine tools change during machining. An optimal process control needs precise knowledge of the actual parameter values. Three different algorithms are introduced to estimate the modal parameter values of system in a short time window with high resolution: least squares estimation (LSE), estimation of signal parameters via rotational invariance (ESPRIT) and orthogonal matching pursuits (OMP) algorithm. These algorithms are augmented with a sliding-window operation to reveal the actual system dynamic behavior at every time instance. This paper focuses on comparing the performance and the identification accuracy of the proposed methods and the influence of the applied window size and noise content using numerical examinations. The results show that the sliding-window LSE can estimate transient parameters accurately and suits realtime control processes.
比较了短时间内模型参数辨识的不同方法
机床的参数值在加工过程中会发生变化。最优的过程控制需要对实际参数值有精确的了解。介绍了在短时间窗内高分辨率估计系统模态参数值的三种不同算法:最小二乘估计(LSE)、旋转不变性估计(ESPRIT)和正交匹配追踪(OMP)算法。这些算法增加了滑动窗口操作,以显示每个时间实例的实际系统动态行为。本文重点比较了所提方法的性能和识别精度,以及应用窗口大小和噪声含量的影响。结果表明,滑动窗口LSE能准确估计暂态参数,适合实时控制过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信