Towards the introduction of human perception in a natural scene classification system

G. Nathalie, L.B. Herve, H. Jeanny, G. Anne
{"title":"Towards the introduction of human perception in a natural scene classification system","authors":"G. Nathalie, L.B. Herve, H. Jeanny, G. Anne","doi":"10.1109/NNSP.2002.1030050","DOIUrl":null,"url":null,"abstract":"We develop a method to optimize a machine-based semantic categorization of natural images according to human perception. First, the categories are determined through a psychophysical experiment. The similarity matrices obtained from the human responses are analyzed by a multidimensional scaling technique called curvilinear component analysis (CCA). The same is done with an automatic image indexing system based on similarities between the outputs of Gabor filters applied to the images. Then we show that, by using the human categorization to balance the filter outputs, the system's performance may be significantly improved.","PeriodicalId":117945,"journal":{"name":"Proceedings of the 12th IEEE Workshop on Neural Networks for Signal Processing","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 12th IEEE Workshop on Neural Networks for Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NNSP.2002.1030050","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

Abstract

We develop a method to optimize a machine-based semantic categorization of natural images according to human perception. First, the categories are determined through a psychophysical experiment. The similarity matrices obtained from the human responses are analyzed by a multidimensional scaling technique called curvilinear component analysis (CCA). The same is done with an automatic image indexing system based on similarities between the outputs of Gabor filters applied to the images. Then we show that, by using the human categorization to balance the filter outputs, the system's performance may be significantly improved.
在自然场景分类系统中引入人类感知的研究
我们开发了一种方法来优化基于机器的语义分类的自然图像根据人类的感知。首先,通过心理物理实验确定类别。利用曲线分量分析(CCA)的多维标度技术对人体反应的相似矩阵进行分析。基于应用于图像的Gabor滤波器输出之间的相似性,自动图像索引系统也是如此。然后我们证明,通过使用人工分类来平衡滤波器输出,系统的性能可以得到显着提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信