Human Motion Change Detection by Hierarchical Gaussian Process Dynamical Model with Particle Filter

Yafeng Yin, H. Man, Jing Wang, Guang Yang
{"title":"Human Motion Change Detection by Hierarchical Gaussian Process Dynamical Model with Particle Filter","authors":"Yafeng Yin, H. Man, Jing Wang, Guang Yang","doi":"10.1109/AVSS.2010.55","DOIUrl":null,"url":null,"abstract":"Human motion change detection is a challenging taskfor a surveillance sensor system. Major challenges includecomplex scenes with a large amount of targets and confusors,and complex motion behaviors of different human objects.Human motion change detection and understandinghave been intensively studied over the past decades. In thispaper, we present a Hierarchical Gaussian Process DynamicalModel (HGPDM) integrated with particle filter trackerfor humanmotion change detection. Firstly, the high dimensionalhuman motion trajectory training data is projected tothe low dimensional latent space with a two-layer hierarchy.The latent space at the leaf node in bottom layer representsa typical humanmotion trajectory, while the root node in theupper layer controls the interaction and switching amongleaf nodes. The trained HGPDM will then be used to classifytest object trajectories which are captured by the particlefilter tracker. If the motion trajectory is different fromthe motion in the previous frame, the root node will transferthe motion trajectory to the corresponding leaf node. Inaddition, HGPDM can be used to predict the next motionstate, and provide Gaussian process dynamical samples forthe particle filter framework. The experiment results indicatethat our framework can accurately track and detect thehuman motion changes despite of complex motion and occlusion.In addition, the sampling in the hierarchical latentspace has greatly improved the efficiency of the particle filterframework.","PeriodicalId":415758,"journal":{"name":"2010 7th IEEE International Conference on Advanced Video and Signal Based Surveillance","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 7th IEEE International Conference on Advanced Video and Signal Based Surveillance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AVSS.2010.55","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Human motion change detection is a challenging taskfor a surveillance sensor system. Major challenges includecomplex scenes with a large amount of targets and confusors,and complex motion behaviors of different human objects.Human motion change detection and understandinghave been intensively studied over the past decades. In thispaper, we present a Hierarchical Gaussian Process DynamicalModel (HGPDM) integrated with particle filter trackerfor humanmotion change detection. Firstly, the high dimensionalhuman motion trajectory training data is projected tothe low dimensional latent space with a two-layer hierarchy.The latent space at the leaf node in bottom layer representsa typical humanmotion trajectory, while the root node in theupper layer controls the interaction and switching amongleaf nodes. The trained HGPDM will then be used to classifytest object trajectories which are captured by the particlefilter tracker. If the motion trajectory is different fromthe motion in the previous frame, the root node will transferthe motion trajectory to the corresponding leaf node. Inaddition, HGPDM can be used to predict the next motionstate, and provide Gaussian process dynamical samples forthe particle filter framework. The experiment results indicatethat our framework can accurately track and detect thehuman motion changes despite of complex motion and occlusion.In addition, the sampling in the hierarchical latentspace has greatly improved the efficiency of the particle filterframework.
基于粒子滤波的分层高斯过程动态模型人体运动变化检测
人体运动变化检测对监控传感器系统来说是一项具有挑战性的任务。主要挑战包括具有大量目标和混淆的复杂场景,以及不同人类物体的复杂运动行为。在过去的几十年里,人类运动变化的检测和理解已经得到了广泛的研究。本文提出了一种结合粒子滤波跟踪器的分层高斯过程动态模型(HGPDM)用于人体运动变化检测。首先,将高维人体运动轨迹训练数据用两层结构投影到低维潜在空间;底层叶节点的潜在空间代表典型的人体运动轨迹,上层的根节点控制叶节点之间的交互和切换。训练后的HGPDM将用于对粒子过滤器跟踪器捕获的测试对象轨迹进行分类。如果运动轨迹与前一帧的运动不同,根节点将运动轨迹转移到相应的叶节点。此外,HGPDM可用于预测下一个运动状态,并为粒子滤波框架提供高斯过程动态样本。实验结果表明,在复杂的运动和遮挡情况下,我们的框架能够准确地跟踪和检测人体的运动变化。此外,分层潜在空间的采样大大提高了粒子滤波框架的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信