FlashRegex

Yeting Li, Zhiwu Xu, Jialun Cao, Haiming Chen, Tingjian Ge, S. Cheung, Haoren Zhao
{"title":"FlashRegex","authors":"Yeting Li, Zhiwu Xu, Jialun Cao, Haiming Chen, Tingjian Ge, S. Cheung, Haoren Zhao","doi":"10.1145/3324884.3416556","DOIUrl":null,"url":null,"abstract":"Regular expressions (regexes) are widely used in different fields of computer science such as programming languages, string processing and databases. However, existing tools for synthesizing or repairing regexes were not designed to be resilient to Regex Denial of Service (ReDoS) attacks. Specifically, if a regex has super-linear (SL) worst-case complexity, an attacker could provide carefully-crafted inputs to launch ReDoS attacks. Therefore, in this paper, we propose a programming-by-example framework, FlashRegex, for generating anti-ReDoS regexes by either synthesizing or repairing from given examples. It is the first framework that integrates regex synthesis and repair with the awareness of ReDoS-vulnerabilities. We present novel algorithms to deduce anti-ReDoS regexes by reducing the ambiguity of these regexes and by using Boolean Satisfiability (SAT) or Neighborhood Search (NS) techniques. We evaluate FlashRegex with five related state-of-the-art tools. The evaluation results show that our work can effectively and efficiently generate anti-ReDoS regexes from given examples, and also reveal that existing synthesis and repair tools have neglected ReDoS-vulnerabilities of regexes. Specifically, the existing synthesis and repair tools generated up to 394 ReDoS-vulnerable regex within few seconds to more than onehour, while FlashRegex generated no SL regex within around five seconds. Furthermore, the evaluation results on ReDoS-vulnerable regex repair also show that FlashRegex has better capability than existing repair tools and even human experts, achieving 4 more ReDoS-invulnerable regex after repair without trimming and resorting, highlighting the usefulness of FlashRegex in terms of the generality, automation and user-friendliness.","PeriodicalId":267160,"journal":{"name":"Proceedings of the 35th IEEE/ACM International Conference on Automated Software Engineering","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 35th IEEE/ACM International Conference on Automated Software Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3324884.3416556","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

Regular expressions (regexes) are widely used in different fields of computer science such as programming languages, string processing and databases. However, existing tools for synthesizing or repairing regexes were not designed to be resilient to Regex Denial of Service (ReDoS) attacks. Specifically, if a regex has super-linear (SL) worst-case complexity, an attacker could provide carefully-crafted inputs to launch ReDoS attacks. Therefore, in this paper, we propose a programming-by-example framework, FlashRegex, for generating anti-ReDoS regexes by either synthesizing or repairing from given examples. It is the first framework that integrates regex synthesis and repair with the awareness of ReDoS-vulnerabilities. We present novel algorithms to deduce anti-ReDoS regexes by reducing the ambiguity of these regexes and by using Boolean Satisfiability (SAT) or Neighborhood Search (NS) techniques. We evaluate FlashRegex with five related state-of-the-art tools. The evaluation results show that our work can effectively and efficiently generate anti-ReDoS regexes from given examples, and also reveal that existing synthesis and repair tools have neglected ReDoS-vulnerabilities of regexes. Specifically, the existing synthesis and repair tools generated up to 394 ReDoS-vulnerable regex within few seconds to more than onehour, while FlashRegex generated no SL regex within around five seconds. Furthermore, the evaluation results on ReDoS-vulnerable regex repair also show that FlashRegex has better capability than existing repair tools and even human experts, achieving 4 more ReDoS-invulnerable regex after repair without trimming and resorting, highlighting the usefulness of FlashRegex in terms of the generality, automation and user-friendliness.
FlashRegex
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信