Hierarchical modeling using automated sub-clustering for sound event recognition

M. Niessen, T. V. Kasteren, A. Merentitis
{"title":"Hierarchical modeling using automated sub-clustering for sound event recognition","authors":"M. Niessen, T. V. Kasteren, A. Merentitis","doi":"10.1109/WASPAA.2013.6701862","DOIUrl":null,"url":null,"abstract":"The automatic recognition of sound events allows for novel applications in areas such as security, mobile and multimedia. In this work we present a hierarchical hidden Markov model for sound event detection that automatically clusters the inherent structure of the events into sub-events. We evaluate our approach on an IEEE audio challenge dataset consisting of office sound events and provide a systematic comparison of the various building blocks of our approach to demonstrate the effectiveness of incorporating certain dependencies in the model. The hierarchical hidden Markov model achieves an average frame-based F-measure recognition performance of 45.5% on a test dataset that was used to evaluate challenge submissions. We also show how the hierarchical model can be used as a meta-classifier, although in the particular application this did not lead to an increase in performance on the test dataset.","PeriodicalId":341888,"journal":{"name":"2013 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics","volume":"349 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WASPAA.2013.6701862","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

Abstract

The automatic recognition of sound events allows for novel applications in areas such as security, mobile and multimedia. In this work we present a hierarchical hidden Markov model for sound event detection that automatically clusters the inherent structure of the events into sub-events. We evaluate our approach on an IEEE audio challenge dataset consisting of office sound events and provide a systematic comparison of the various building blocks of our approach to demonstrate the effectiveness of incorporating certain dependencies in the model. The hierarchical hidden Markov model achieves an average frame-based F-measure recognition performance of 45.5% on a test dataset that was used to evaluate challenge submissions. We also show how the hierarchical model can be used as a meta-classifier, although in the particular application this did not lead to an increase in performance on the test dataset.
基于自动子聚类的声音事件识别分层建模
声音事件的自动识别允许在安全、移动和多媒体等领域的新应用。在这项工作中,我们提出了一种用于声音事件检测的分层隐马尔可夫模型,该模型自动将事件的固有结构聚类成子事件。我们在由办公室声音事件组成的IEEE音频挑战数据集上评估了我们的方法,并提供了我们方法的各种构建块的系统比较,以证明在模型中合并某些依赖关系的有效性。在用于评估挑战提交的测试数据集上,分层隐马尔可夫模型实现了平均45.5%的基于帧的f测度识别性能。我们还展示了如何将分层模型用作元分类器,尽管在特定的应用程序中,这并没有导致测试数据集上性能的提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信