Adjustable Load Capacity Forecasting Technology Based on Unsupervised Learning

Yurui Yang, Jiantong Yue, Q. Yao, Qiuqiang Zhou, Jia Wu, Bailang Pan
{"title":"Adjustable Load Capacity Forecasting Technology Based on Unsupervised Learning","authors":"Yurui Yang, Jiantong Yue, Q. Yao, Qiuqiang Zhou, Jia Wu, Bailang Pan","doi":"10.1109/AIAM54119.2021.00064","DOIUrl":null,"url":null,"abstract":"In the existing power grid demand management, there is a lack of perfect demand side resource load response analysis and load schedulable capacity analysis. Aiming at the problem of load adjustable capacity in the power grid, an adjustable load adjustment capacity evaluation model is established to convert the load into load characteristic parameters, and the fuzzy c-means clustering algorithm based on peak density is used to process the load characteristic parameters to accurately identify the adjustable load; Aiming at several influencing factors of adjustable load, the adjustable capacity of adjustable load is explored by using multi-core function, and the capacity is evaluated by different indexes.","PeriodicalId":227320,"journal":{"name":"2021 3rd International Conference on Artificial Intelligence and Advanced Manufacture (AIAM)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 3rd International Conference on Artificial Intelligence and Advanced Manufacture (AIAM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AIAM54119.2021.00064","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In the existing power grid demand management, there is a lack of perfect demand side resource load response analysis and load schedulable capacity analysis. Aiming at the problem of load adjustable capacity in the power grid, an adjustable load adjustment capacity evaluation model is established to convert the load into load characteristic parameters, and the fuzzy c-means clustering algorithm based on peak density is used to process the load characteristic parameters to accurately identify the adjustable load; Aiming at several influencing factors of adjustable load, the adjustable capacity of adjustable load is explored by using multi-core function, and the capacity is evaluated by different indexes.
基于无监督学习的可调负荷预测技术
在现有的电网需求管理中,缺乏完善的需求侧资源负荷响应分析和负荷可调度能力分析。针对电网中负荷可调能力问题,建立了可调负荷调节能力评价模型,将负荷转化为负荷特征参数,采用基于峰值密度的模糊c均值聚类算法对负荷特征参数进行处理,准确识别可调负荷;针对影响可调负荷的几个因素,利用多核函数对可调负荷的可调能力进行了探讨,并采用不同指标对可调负荷的可调能力进行了评价。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信