Randomized Quasi-Monte Carlo for Quantile Estimation

Zachary T. Kaplan, Yajuan Li, Marvin K. Nakayama, B. Tuffin
{"title":"Randomized Quasi-Monte Carlo for Quantile Estimation","authors":"Zachary T. Kaplan, Yajuan Li, Marvin K. Nakayama, B. Tuffin","doi":"10.1109/WSC40007.2019.9004679","DOIUrl":null,"url":null,"abstract":"We compare two approaches for quantile estimation via randomized quasi-Monte Carlo (RQMC) in an asymptotic setting where the number of randomizations for RQMC grows large but the size of the low-discrepancy point set remains fixed. In the first method, for each randomization, we compute an estimator of the cumulative distribution function (CDF), which is inverted to obtain a quantile estimator, and the overall quantile estimator is the sample average of the quantile estimators across randomizations. The second approach instead computes a single quantile estimator by inverting one CDF estimator across all randomizations. Because quantile estimators are generally biased, the first method leads to an estimator that does not converge to the true quantile as the number of randomizations goes to infinity. In contrast, the second estimator does, and we establish a central limit theorem for it. Numerical results further illustrate these points.","PeriodicalId":127025,"journal":{"name":"2019 Winter Simulation Conference (WSC)","volume":"129 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Winter Simulation Conference (WSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WSC40007.2019.9004679","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

We compare two approaches for quantile estimation via randomized quasi-Monte Carlo (RQMC) in an asymptotic setting where the number of randomizations for RQMC grows large but the size of the low-discrepancy point set remains fixed. In the first method, for each randomization, we compute an estimator of the cumulative distribution function (CDF), which is inverted to obtain a quantile estimator, and the overall quantile estimator is the sample average of the quantile estimators across randomizations. The second approach instead computes a single quantile estimator by inverting one CDF estimator across all randomizations. Because quantile estimators are generally biased, the first method leads to an estimator that does not converge to the true quantile as the number of randomizations goes to infinity. In contrast, the second estimator does, and we establish a central limit theorem for it. Numerical results further illustrate these points.
分位数估计的随机拟蒙特卡罗算法
我们比较了两种通过随机准蒙特卡罗(RQMC)进行分位数估计的方法,在渐近设置中,RQMC的随机化数量增加,但低差异点集的大小保持固定。在第一种方法中,对于每个随机化,我们计算累积分布函数(CDF)的估计量,将其反向得到一个分位数估计量,总体分位数估计量是跨随机化的分位数估计量的样本平均值。第二种方法通过在所有随机化中反转一个CDF估计量来计算单个分位数估计量。由于分位数估计量通常是有偏的,第一种方法导致估计量不收敛于真实的分位数,因为随机化的数量趋于无穷大。与之相反,第二个估计量是存在的,并且我们建立了它的中心极限定理。数值结果进一步说明了这些观点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信