Image2Text: A Multimodal Image Captioner

Chang Liu, Changhu Wang, F. Sun, Y. Rui
{"title":"Image2Text: A Multimodal Image Captioner","authors":"Chang Liu, Changhu Wang, F. Sun, Y. Rui","doi":"10.1145/2964284.2973831","DOIUrl":null,"url":null,"abstract":"In this work, we showcase the Image2Text system, which is a real-time captioning system that can generate human-level natural language description for any input image. We formulate the problem of image captioning as a multimodal translation task. Analogous to machine translation, we present a sequence-to-sequence recurrent neural networks (RNN) model for image caption generation. Different from most existing work where the whole image is represented by a convolutional neural networks (CNN) feature, we propose to represent the input image as a sequence of detected objects to serve as the source sequence of the RNN model. Based on the captioning framework, we develop a user-friendly system to automatically generated human-level captions for users. The system also enables users to detect salient objects in an image, and retrieve similar images and corresponding descriptions from a database.","PeriodicalId":140670,"journal":{"name":"Proceedings of the 24th ACM international conference on Multimedia","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 24th ACM international conference on Multimedia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2964284.2973831","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

In this work, we showcase the Image2Text system, which is a real-time captioning system that can generate human-level natural language description for any input image. We formulate the problem of image captioning as a multimodal translation task. Analogous to machine translation, we present a sequence-to-sequence recurrent neural networks (RNN) model for image caption generation. Different from most existing work where the whole image is represented by a convolutional neural networks (CNN) feature, we propose to represent the input image as a sequence of detected objects to serve as the source sequence of the RNN model. Based on the captioning framework, we develop a user-friendly system to automatically generated human-level captions for users. The system also enables users to detect salient objects in an image, and retrieve similar images and corresponding descriptions from a database.
Image2Text:一个多模态图像Captioner
在这项工作中,我们展示了Image2Text系统,这是一个实时字幕系统,可以为任何输入图像生成人类级别的自然语言描述。我们将图像字幕问题表述为一个多模态翻译任务。与机器翻译类似,我们提出了一种用于图像标题生成的序列到序列递归神经网络(RNN)模型。与大多数现有工作中用卷积神经网络(CNN)特征表示整个图像不同,我们提出将输入图像表示为检测到的物体序列,作为RNN模型的源序列。基于字幕框架,我们开发了一个用户友好的系统,为用户自动生成人性化的字幕。该系统还使用户能够检测图像中的突出物体,并从数据库中检索相似的图像和相应的描述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信