Kernelizing Geweke's measures of granger causality

P. Amblard, Rémy Vincent, O. Michel, C. Richard
{"title":"Kernelizing Geweke's measures of granger causality","authors":"P. Amblard, Rémy Vincent, O. Michel, C. Richard","doi":"10.1109/MLSP.2012.6349710","DOIUrl":null,"url":null,"abstract":"In this paper we extend Geweke's approach of Granger causality by deriving a nonlinear framework based on functional regression in reproducing kernel Hilbert spaces (RKHS). After giving the definitions of dynamical and instantaneous causality in the Granger sense, we review Geweke's measures. These measures quantify improvement in predicting a time series when the past of another one is taken into account. Geweke's measures are based on linear prediction, and we present an alternative using nonlinear prediction implemented using regularized regression in RKHS. We develop the approach and describe the cross-validation step implemented to optimize the hyperparameters (kernel and regularization parameters). We illustrate the approach on two examples. The first one shows the importance of taking into account side information and possible nonlinear effects. The second one is an illustration of the complete inference problem: surrogate data are generated to create the null hypothesis and the nonlinear measures of causal influence are presented in a test framework.","PeriodicalId":262601,"journal":{"name":"2012 IEEE International Workshop on Machine Learning for Signal Processing","volume":"109 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Workshop on Machine Learning for Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MLSP.2012.6349710","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

In this paper we extend Geweke's approach of Granger causality by deriving a nonlinear framework based on functional regression in reproducing kernel Hilbert spaces (RKHS). After giving the definitions of dynamical and instantaneous causality in the Granger sense, we review Geweke's measures. These measures quantify improvement in predicting a time series when the past of another one is taken into account. Geweke's measures are based on linear prediction, and we present an alternative using nonlinear prediction implemented using regularized regression in RKHS. We develop the approach and describe the cross-validation step implemented to optimize the hyperparameters (kernel and regularization parameters). We illustrate the approach on two examples. The first one shows the importance of taking into account side information and possible nonlinear effects. The second one is an illustration of the complete inference problem: surrogate data are generated to create the null hypothesis and the nonlinear measures of causal influence are presented in a test framework.
对Geweke的格兰杰因果关系测度进行核化
本文通过在再现核希尔伯特空间(RKHS)中推导一个基于泛函回归的非线性框架,扩展了Geweke的Granger因果关系方法。在给出格兰杰意义上的动态因果关系和瞬时因果关系的定义之后,我们回顾了Geweke的测度。当考虑到另一个时间序列的过去时,这些措施量化了预测时间序列的改进。Geweke的措施是基于线性预测,我们提出了一种替代方案,即在RKHS中使用正则化回归实现非线性预测。我们开发了该方法,并描述了实现优化超参数(核和正则化参数)的交叉验证步骤。我们用两个例子来说明这种方法。第一个图显示了考虑侧面信息和可能的非线性效应的重要性。第二个是完整推理问题的说明:生成替代数据以创建零假设,并在测试框架中提出因果影响的非线性度量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信