Parallel cache-efficient code for computing the McCaskill partition functions

M. Pałkowski, W. Bielecki
{"title":"Parallel cache-efficient code for computing the McCaskill partition functions","authors":"M. Pałkowski, W. Bielecki","doi":"10.15439/2019F8","DOIUrl":null,"url":null,"abstract":"We present parallel tiled optimized McCaskill’s partition functions computation code. That CPU and memory intensive dynamic programming task is within computational biology. To optimize code, we use the authorial source-to-source TRACO compiler and compare obtained code performance to that generated with the state-of-the-art PluTo compiler based on the affine transformations framework (ATF). Although PLuTo generates tiled code with outstanding locality, it fails to parallelize tiled code. A TRACO tiling strategy uses the transitive closure of a dependence graph to avoid affine function calculation. The ISL scheduler is used to parallelize tiled loop nests. An experimental study carried out on a multi-core computer demonstrates considerable speed-up of generated code for the larger number of threads.","PeriodicalId":168208,"journal":{"name":"2019 Federated Conference on Computer Science and Information Systems (FedCSIS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Federated Conference on Computer Science and Information Systems (FedCSIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15439/2019F8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

We present parallel tiled optimized McCaskill’s partition functions computation code. That CPU and memory intensive dynamic programming task is within computational biology. To optimize code, we use the authorial source-to-source TRACO compiler and compare obtained code performance to that generated with the state-of-the-art PluTo compiler based on the affine transformations framework (ATF). Although PLuTo generates tiled code with outstanding locality, it fails to parallelize tiled code. A TRACO tiling strategy uses the transitive closure of a dependence graph to avoid affine function calculation. The ISL scheduler is used to parallelize tiled loop nests. An experimental study carried out on a multi-core computer demonstrates considerable speed-up of generated code for the larger number of threads.
用于计算McCaskill分区函数的并行缓存效率代码
给出了并行平铺优化的McCaskill配分函数计算代码。这种CPU和内存密集型的动态规划任务属于计算生物学。为了优化代码,我们使用原始的源到源TRACO编译器,并将获得的代码性能与基于仿射转换框架(ATF)的最先进的PluTo编译器生成的代码性能进行比较。尽管PLuTo生成的平铺代码具有出色的局部性,但它无法并行化平铺代码。TRACO平铺策略使用依赖图的传递闭包来避免仿射函数的计算。ISL调度器用于并行化平铺循环巢。在多核计算机上进行的一项实验研究表明,在线程数量较多的情况下,生成代码的速度有相当大的提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信