Using Sentinel-2 Image Time Series to map the State of Victoria, Australia

Charlotte Pelletier, Zehui Ji, O. Hagolle, E. Morse-McNabb, K. Sheffield, Geoffrey I. Webb, F. Petitjean
{"title":"Using Sentinel-2 Image Time Series to map the State of Victoria, Australia","authors":"Charlotte Pelletier, Zehui Ji, O. Hagolle, E. Morse-McNabb, K. Sheffield, Geoffrey I. Webb, F. Petitjean","doi":"10.1109/Multi-Temp.2019.8866921","DOIUrl":null,"url":null,"abstract":"Sentinel-2 satellites are now acquiring images of the entire Earth every five days from 10 to 60 m spatial resolution. The supervised classification of this new optical image time series allows the operational production of accurate land cover maps over large areas. In this paper, we investigate the use of one year of Sentinel-2 data to map the state of Victoria in Australia. In particular, we produce two land cover maps using the most established and advanced algorithms in time series classification: Random Forest (RF) and Temporal Convolutional Neural Network (TempCNN). To our knowledge, these are the first land cover maps at 10 m spatial resolution for an Australian state.","PeriodicalId":106790,"journal":{"name":"2019 10th International Workshop on the Analysis of Multitemporal Remote Sensing Images (MultiTemp)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 10th International Workshop on the Analysis of Multitemporal Remote Sensing Images (MultiTemp)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/Multi-Temp.2019.8866921","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Sentinel-2 satellites are now acquiring images of the entire Earth every five days from 10 to 60 m spatial resolution. The supervised classification of this new optical image time series allows the operational production of accurate land cover maps over large areas. In this paper, we investigate the use of one year of Sentinel-2 data to map the state of Victoria in Australia. In particular, we produce two land cover maps using the most established and advanced algorithms in time series classification: Random Forest (RF) and Temporal Convolutional Neural Network (TempCNN). To our knowledge, these are the first land cover maps at 10 m spatial resolution for an Australian state.
利用Sentinel-2图像时间序列绘制澳大利亚维多利亚州地图
哨兵2号卫星现在每5天获取10到60米空间分辨率的整个地球的图像。这种新的光学图像时间序列的监督分类允许在大范围内生产精确的土地覆盖地图。在本文中,我们研究了使用一年的Sentinel-2数据来绘制澳大利亚维多利亚州的地图。特别是,我们使用时间序列分类中最成熟和最先进的算法:随机森林(RF)和时间卷积神经网络(TempCNN)生成了两个土地覆盖图。据我们所知,这是澳大利亚第一张10米空间分辨率的土地覆盖地图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信