Human action recognition using Lagrangian descriptors

Esra Acar, T. Senst, A. Kuhn, I. Keller, H. Theisel, S. Albayrak, T. Sikora
{"title":"Human action recognition using Lagrangian descriptors","authors":"Esra Acar, T. Senst, A. Kuhn, I. Keller, H. Theisel, S. Albayrak, T. Sikora","doi":"10.1109/MMSP.2012.6343469","DOIUrl":null,"url":null,"abstract":"Human action recognition requires the description of complex motion patterns in image sequences. In general, these patterns span varying temporal scales. In this context, Lagrangian methods have proven to be valuable for crowd analysis tasks such as crowd segmentation. In this paper, we show that, besides their potential in describing large scale motion patterns, Lagrangian methods are also well suited to model complex individual human activities over variable time intervals. We use Finite Time Lyapunov Exponents and time-normalized arc length measures in a linear SVM classification scheme. We evaluated our method on the Weizmann and KTH datasets. The results demonstrate that our approach is promising and that human action recognition performance is improved by fusing Lagrangian measures.","PeriodicalId":325274,"journal":{"name":"2012 IEEE 14th International Workshop on Multimedia Signal Processing (MMSP)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE 14th International Workshop on Multimedia Signal Processing (MMSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMSP.2012.6343469","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

Human action recognition requires the description of complex motion patterns in image sequences. In general, these patterns span varying temporal scales. In this context, Lagrangian methods have proven to be valuable for crowd analysis tasks such as crowd segmentation. In this paper, we show that, besides their potential in describing large scale motion patterns, Lagrangian methods are also well suited to model complex individual human activities over variable time intervals. We use Finite Time Lyapunov Exponents and time-normalized arc length measures in a linear SVM classification scheme. We evaluated our method on the Weizmann and KTH datasets. The results demonstrate that our approach is promising and that human action recognition performance is improved by fusing Lagrangian measures.
使用拉格朗日描述符的人类动作识别
人体动作识别需要对图像序列中复杂的运动模式进行描述。一般来说,这些模式跨越不同的时间尺度。在这种情况下,拉格朗日方法已被证明是有价值的人群分析任务,如人群分割。在本文中,我们表明,除了在描述大规模运动模式方面的潜力之外,拉格朗日方法也非常适合于在可变时间间隔内模拟复杂的个体人类活动。我们在线性支持向量机分类方案中使用有限时间李雅普诺夫指数和时间归一化弧长度量。我们在Weizmann和KTH数据集上评估了我们的方法。结果表明,我们的方法是有前途的,并且通过融合拉格朗日度量提高了人类动作识别的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信