A Method for Fast Outlier Detection in High Dimensional Database Log

Xin Song, Yichuan Wang, Lei Zhu, Wenjiang Ji, Yanning Du, Feixiong Hu
{"title":"A Method for Fast Outlier Detection in High Dimensional Database Log","authors":"Xin Song, Yichuan Wang, Lei Zhu, Wenjiang Ji, Yanning Du, Feixiong Hu","doi":"10.1109/NaNA53684.2021.00048","DOIUrl":null,"url":null,"abstract":"An easy to implement and effective outlier detection method is proposed in this paper, which is a two-stage process combining the kd-tree structure and the Isolation Forest (Forest) method. We use kd-tree to split high dimensional data into groups, and then apply Forest to each group to calculate anomaly scores which help to identify outliers. This method is fast since it decides anomaly on groups of a dataset instead of the whole dataset, meanwhile the accuracy is assured by Forest. We tested our method with synthetic and real-world data set to illustrates its application to data base access logs.","PeriodicalId":414672,"journal":{"name":"2021 International Conference on Networking and Network Applications (NaNA)","volume":"107 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Networking and Network Applications (NaNA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NaNA53684.2021.00048","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

An easy to implement and effective outlier detection method is proposed in this paper, which is a two-stage process combining the kd-tree structure and the Isolation Forest (Forest) method. We use kd-tree to split high dimensional data into groups, and then apply Forest to each group to calculate anomaly scores which help to identify outliers. This method is fast since it decides anomaly on groups of a dataset instead of the whole dataset, meanwhile the accuracy is assured by Forest. We tested our method with synthetic and real-world data set to illustrates its application to data base access logs.
一种高维数据库日志异常点快速检测方法
本文提出了一种易于实现且有效的离群点检测方法,该方法将kd-tree结构与隔离森林(Forest)方法相结合,分为两阶段进行。我们使用kd-tree将高维数据分成不同的组,然后对每组应用Forest计算异常分数,从而帮助识别异常值。该方法不需要对整个数据集进行异常判断,而是对数据集的组进行异常判断,速度快,同时采用Forest算法保证了异常判断的准确性。我们用合成数据集和真实数据集测试了我们的方法,以说明它在数据库访问日志中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信