On symmetric matrices associated with oriented link diagrams

R. Kashaev
{"title":"On symmetric matrices associated with oriented link diagrams","authors":"R. Kashaev","doi":"10.4171/irma/33-1/8","DOIUrl":null,"url":null,"abstract":"Let $D$ be an oriented link diagram with the set of regions $\\operatorname{r}_{D}$. We define a symmetric map (or matrix) $\\operatorname{\\tau}_{D}\\colon\\operatorname{r}_{D}\\times \\operatorname{r}_{D} \\to \\mathbb{Z}[x]$ that gives rise to an invariant of oriented links, based on a slightly modified $S$-equivalence of Trotter and Murasugi in the space of symmetric matrices. In particular, for real $x$, the negative signature of $\\operatorname{\\tau}_{D}$ corrected by the writhe is conjecturally twice the Tristram--Levine signature function, where $2x=\\sqrt{t}+\\frac1{\\sqrt{t}}$ with $t$ being the indeterminate of the Alexander polynomial.","PeriodicalId":270093,"journal":{"name":"Topology and Geometry","volume":"201 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topology and Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4171/irma/33-1/8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Let $D$ be an oriented link diagram with the set of regions $\operatorname{r}_{D}$. We define a symmetric map (or matrix) $\operatorname{\tau}_{D}\colon\operatorname{r}_{D}\times \operatorname{r}_{D} \to \mathbb{Z}[x]$ that gives rise to an invariant of oriented links, based on a slightly modified $S$-equivalence of Trotter and Murasugi in the space of symmetric matrices. In particular, for real $x$, the negative signature of $\operatorname{\tau}_{D}$ corrected by the writhe is conjecturally twice the Tristram--Levine signature function, where $2x=\sqrt{t}+\frac1{\sqrt{t}}$ with $t$ being the indeterminate of the Alexander polynomial.
关于与定向链接图相关联的对称矩阵
设$D$为具有区域集$\operatorname{r}_{D}$的定向链接图。基于Trotter和Murasugi在对称矩阵空间中的一个略微修改的$S$等价,我们定义了一个对称映射(或矩阵)$\operatorname{\tau}_{D}\colon\operatorname{r}_{D}\times \operatorname{r}_{D} \to \mathbb{Z}[x]$,它产生了定向链接的不变量。特别是,对于实数$x$,由writhe修正的$\operatorname{\tau}_{D}$的负签名推测是Tristram- Levine签名函数的两倍,其中$2x=\sqrt{t}+\frac1{\sqrt{t}}$与$t$是Alexander多项式的不定式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信