Metric Learning for Music Symbol Recognition

Ana Rebelo, J. Tkaczuk, R. Sousa, Jaime S. Cardoso
{"title":"Metric Learning for Music Symbol Recognition","authors":"Ana Rebelo, J. Tkaczuk, R. Sousa, Jaime S. Cardoso","doi":"10.1109/ICMLA.2011.94","DOIUrl":null,"url":null,"abstract":"Although Optical Music Recognition (OMR) has been the focus of much research for decades, the processing of handwritten musical scores is not yet satisfactory. The efforts made to find robust symbol representations and learning methodologies have not found a similar quality in the learning of the dissimilarity concept. Simple Euclidean distances are often used to measure dissimilarity between different examples. However, such distances do not necessarily yield the best performance. In this paper, we propose to learn the best distance for the k-nearest neighbor (k-NN) classifier. The distance concept will be tuned both for the application domain and the adopted representation for the music symbols. The performance of the method is compared with the support vector machine (SVM) classifier using both real and synthetic music scores. The synthetic database includes four types of deformations inducing variability in the printed musical symbols which exist in handwritten music sheets. The work presented here can open new research paths towards a novel automatic musical symbols recognition module for handwritten scores.","PeriodicalId":439926,"journal":{"name":"2011 10th International Conference on Machine Learning and Applications and Workshops","volume":"121 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 10th International Conference on Machine Learning and Applications and Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2011.94","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

Although Optical Music Recognition (OMR) has been the focus of much research for decades, the processing of handwritten musical scores is not yet satisfactory. The efforts made to find robust symbol representations and learning methodologies have not found a similar quality in the learning of the dissimilarity concept. Simple Euclidean distances are often used to measure dissimilarity between different examples. However, such distances do not necessarily yield the best performance. In this paper, we propose to learn the best distance for the k-nearest neighbor (k-NN) classifier. The distance concept will be tuned both for the application domain and the adopted representation for the music symbols. The performance of the method is compared with the support vector machine (SVM) classifier using both real and synthetic music scores. The synthetic database includes four types of deformations inducing variability in the printed musical symbols which exist in handwritten music sheets. The work presented here can open new research paths towards a novel automatic musical symbols recognition module for handwritten scores.
音乐符号识别的韵律学习
虽然光学音乐识别(OMR)几十年来一直是许多研究的焦点,但手写乐谱的处理尚不令人满意。在寻找鲁棒符号表示和学习方法方面所做的努力并没有在学习不相似概念方面找到类似的质量。简单的欧几里得距离通常用来衡量不同例子之间的不相似性。然而,这样的距离并不一定会产生最佳性能。在本文中,我们提出学习k-最近邻(k-NN)分类器的最佳距离。距离概念将针对应用领域和所采用的音乐符号表示进行调整。用真实乐谱和合成乐谱与支持向量机分类器进行了性能比较。合成数据库包括四种类型的变形,这些变形在手写乐谱中存在的印刷音乐符号中引起变化。本文提出的工作可以为手写乐谱的自动音乐符号识别模块开辟新的研究路径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信