Minimizing the effects of tolerance faults on hardware realizations of cellular neural networks

R. Tetzlaff, R. Kunz, G. Geis, D. Wolf
{"title":"Minimizing the effects of tolerance faults on hardware realizations of cellular neural networks","authors":"R. Tetzlaff, R. Kunz, G. Geis, D. Wolf","doi":"10.1109/CNNA.1998.685407","DOIUrl":null,"url":null,"abstract":"In this paper a procedure for minimizing the effects of tolerance faults in cellular neural network (CNN) chips is presented. The simulation system SCNN was connected with the \"CNN prototyping system\" for adjusting the parameter values of the cp300 CNN chip. Results showing the erroneous outputs of the VLSI chip are presented, together with a suitable way for adapting parameter directly to a CNN realization.","PeriodicalId":171485,"journal":{"name":"1998 Fifth IEEE International Workshop on Cellular Neural Networks and their Applications. Proceedings (Cat. No.98TH8359)","volume":"99 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"1998 Fifth IEEE International Workshop on Cellular Neural Networks and their Applications. Proceedings (Cat. No.98TH8359)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CNNA.1998.685407","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

In this paper a procedure for minimizing the effects of tolerance faults in cellular neural network (CNN) chips is presented. The simulation system SCNN was connected with the "CNN prototyping system" for adjusting the parameter values of the cp300 CNN chip. Results showing the erroneous outputs of the VLSI chip are presented, together with a suitable way for adapting parameter directly to a CNN realization.
最小化容错对细胞神经网络硬件实现的影响
本文提出了一种最小化细胞神经网络(CNN)芯片容差故障影响的方法。将仿真系统SCNN与“CNN原型系统”连接,对cp300 CNN芯片的参数值进行调整。结果显示了VLSI芯片的错误输出,并提出了一种适合的方法来直接调整参数以实现CNN。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信