FacIt: Factorizing Tensors into Interpretable and Scrutinizable Patterns

Xidao Wen, K. Pelechrinis, Y. Lin, Xi Liu, Yongsu Ahn, Nan Cao
{"title":"FacIt: Factorizing Tensors into Interpretable and Scrutinizable Patterns","authors":"Xidao Wen, K. Pelechrinis, Y. Lin, Xi Liu, Yongsu Ahn, Nan Cao","doi":"10.1109/VISUAL.2019.8933750","DOIUrl":null,"url":null,"abstract":"Tensor Factorization has been widely used in many fields to discover latent patterns from multidimensional data. Interpreting or scrutinizing the tensor factorization results are, however, by no means easy. We introduce FacIt, a generic visual analytic system that directly factorizes tensor-formatted data into a visual representation of patterns to facilitate result interpretation, scrutinization, information query, as well as model selection. Our design consists of (i) a suite of model scrutinizing and inspection tools that allows efficient tensor model selection (commonly known as rank selection problem) and (ii) an interactive visualization design that empowers users with both characteristics- and content-driven pattern discovery. We demonstrate the effectiveness of our system through usage scenarios with policy adoption analysis.","PeriodicalId":192801,"journal":{"name":"2019 IEEE Visualization Conference (VIS)","volume":"201 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Visualization Conference (VIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VISUAL.2019.8933750","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Tensor Factorization has been widely used in many fields to discover latent patterns from multidimensional data. Interpreting or scrutinizing the tensor factorization results are, however, by no means easy. We introduce FacIt, a generic visual analytic system that directly factorizes tensor-formatted data into a visual representation of patterns to facilitate result interpretation, scrutinization, information query, as well as model selection. Our design consists of (i) a suite of model scrutinizing and inspection tools that allows efficient tensor model selection (commonly known as rank selection problem) and (ii) an interactive visualization design that empowers users with both characteristics- and content-driven pattern discovery. We demonstrate the effectiveness of our system through usage scenarios with policy adoption analysis.
事实:将张量分解为可解释和可仔细检查的模式
张量分解被广泛用于从多维数据中发现潜在模式。然而,解释或仔细检查张量分解结果绝非易事。我们介绍FacIt,一个通用的可视化分析系统,它直接将张量格式的数据分解为模式的可视化表示,以方便结果解释,审查,信息查询以及模型选择。我们的设计包括(i)一套模型审查和检查工具,允许有效的张量模型选择(通常称为秩选择问题)和(ii)交互式可视化设计,使用户能够进行特征和内容驱动的模式发现。我们通过带有策略采用分析的使用场景来演示系统的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信