Boosting Monocular Depth with Panoptic Segmentation Maps

Faraz Saeedan, S. Roth
{"title":"Boosting Monocular Depth with Panoptic Segmentation Maps","authors":"Faraz Saeedan, S. Roth","doi":"10.1109/WACV48630.2021.00390","DOIUrl":null,"url":null,"abstract":"Monocular depth prediction is ill-posed by nature; hence successful approaches need to exploit the available cues to the fullest. Yet, real-world training data with depth ground-truth suffers from limited variability and data acquired from depth sensors is also sparse and prone to noise. While available datasets with semantic annotations might help to better exploit semantic cues, they are not immediately usable for depth prediction. We show how to leverage panoptic segmentation maps to boost monocular depth predictors in stereo training setups. In particular, we augment a self-supervised training scheme through panoptic-guided smoothing, panoptic-guided alignment, and panoptic left-right consistency from ground truth or inferred panoptic segmentation maps. Our approach incurs only a minor overhead, can easily be applied to a wide range of depth estimation methods that are trained at least partially using stereo pairs, providing a substantial boost in accuracy.","PeriodicalId":236300,"journal":{"name":"2021 IEEE Winter Conference on Applications of Computer Vision (WACV)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Winter Conference on Applications of Computer Vision (WACV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WACV48630.2021.00390","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

Abstract

Monocular depth prediction is ill-posed by nature; hence successful approaches need to exploit the available cues to the fullest. Yet, real-world training data with depth ground-truth suffers from limited variability and data acquired from depth sensors is also sparse and prone to noise. While available datasets with semantic annotations might help to better exploit semantic cues, they are not immediately usable for depth prediction. We show how to leverage panoptic segmentation maps to boost monocular depth predictors in stereo training setups. In particular, we augment a self-supervised training scheme through panoptic-guided smoothing, panoptic-guided alignment, and panoptic left-right consistency from ground truth or inferred panoptic segmentation maps. Our approach incurs only a minor overhead, can easily be applied to a wide range of depth estimation methods that are trained at least partially using stereo pairs, providing a substantial boost in accuracy.
提高单眼深度与全视分割地图
单目深度预测天生就是病态的;因此,成功的方法需要充分利用现有的线索。然而,现实世界中具有深度真值的训练数据具有有限的可变性,并且从深度传感器获取的数据也很稀疏并且容易受到噪声的影响。虽然带有语义注释的可用数据集可能有助于更好地利用语义线索,但它们不能立即用于深度预测。我们展示了如何利用全视分割图来提高立体训练设置中的单目深度预测器。特别是,我们通过全光制导平滑、全光制导对齐和基于真实或推断的全光分割映射的全光左右一致性来增强自监督训练方案。我们的方法只产生很小的开销,可以很容易地应用于广泛的深度估计方法,这些方法至少部分使用立体对进行训练,从而大大提高了精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信