Naïve Bayes Classifier for Journal Quartile Classification

A. Wibawa, A. C. Kurniawan, Della Murbarani Prawidya Murti, Risky Perdana Adiperkasa, Sandika Maulana Putra, Sulton Aji Kurniawan, Youngga Rega Nugraha
{"title":"Naïve Bayes Classifier for Journal Quartile Classification","authors":"A. Wibawa, A. C. Kurniawan, Della Murbarani Prawidya Murti, Risky Perdana Adiperkasa, Sandika Maulana Putra, Sulton Aji Kurniawan, Youngga Rega Nugraha","doi":"10.3991/ijes.v7i2.10659","DOIUrl":null,"url":null,"abstract":"Classification is a process for distinguishing data classes, with the aim of being able to estimate the class of an object with unknown label. One popular method that used for classifying data is Naïve Bayes Classifier. Naïve Bayes Classifier is an approach that adopts the Bayes theorem, by combining previous knowledge with new knowledge. The advantages of this method are the simple algorithm and high accuracy. In this study, it will show the ability of Naïve Bayes Classifier to classify the quality of a journal commonly called Quartile. This study use a dataset of 1491 instances. The results show an accuracy of 71.60% and an error rate of 28.40%","PeriodicalId":427062,"journal":{"name":"Int. J. Recent Contributions Eng. Sci. IT","volume":"99 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"60","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Recent Contributions Eng. Sci. IT","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3991/ijes.v7i2.10659","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 60

Abstract

Classification is a process for distinguishing data classes, with the aim of being able to estimate the class of an object with unknown label. One popular method that used for classifying data is Naïve Bayes Classifier. Naïve Bayes Classifier is an approach that adopts the Bayes theorem, by combining previous knowledge with new knowledge. The advantages of this method are the simple algorithm and high accuracy. In this study, it will show the ability of Naïve Bayes Classifier to classify the quality of a journal commonly called Quartile. This study use a dataset of 1491 instances. The results show an accuracy of 71.60% and an error rate of 28.40%
Naïve期刊四分位数分类的贝叶斯分类器
分类是一个区分数据类别的过程,目的是能够估计具有未知标签的对象的类别。一种常用的数据分类方法是Naïve贝叶斯分类器。Naïve贝叶斯分类器是一种采用贝叶斯定理,将原有知识与新知识相结合的方法。该方法的优点是算法简单,精度高。在本研究中,它将展示Naïve贝叶斯分类器对通常称为Quartile的期刊的质量进行分类的能力。本研究使用了1491个实例的数据集。结果表明,该方法的准确率为71.60%,错误率为28.40%
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信