A Polar Representation for Complex Interval Numbers

Arão Lyra, Adrião D. D. Neto, B. Bedregal, R. M. P. Trindade
{"title":"A Polar Representation for Complex Interval Numbers","authors":"Arão Lyra, Adrião D. D. Neto, B. Bedregal, R. M. P. Trindade","doi":"10.22481/RECIC.V1I1.4929","DOIUrl":null,"url":null,"abstract":"The present work defines the basic elements for the introduction to the Study of Complex variables under the mathematical interval context with the goal of using it as a foundation for the understanding of pure mathematical problems, associating the mathematical interval to support the results. The present article contributes to the complex interval theory taking into consideration Euler’s Identity and redefining the polar representation of interval complex numbers. In engineering, the present article could be used as a subsidy for many applications where complex variable theory is applicable and requires accurate results.","PeriodicalId":367401,"journal":{"name":"Revista de Ciência da Computação","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista de Ciência da Computação","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22481/RECIC.V1I1.4929","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The present work defines the basic elements for the introduction to the Study of Complex variables under the mathematical interval context with the goal of using it as a foundation for the understanding of pure mathematical problems, associating the mathematical interval to support the results. The present article contributes to the complex interval theory taking into consideration Euler’s Identity and redefining the polar representation of interval complex numbers. In engineering, the present article could be used as a subsidy for many applications where complex variable theory is applicable and requires accurate results.
复区间数的极坐标表示
本文定义了在数学区间背景下引入复变量研究的基本要素,目的是将其作为理解纯数学问题的基础,将数学区间联系起来支持结果。本文建立了考虑欧拉恒等式的复区间理论,重新定义了区间复数的极坐标表示。在工程中,本文可以作为对复杂变量理论适用和需要精确结果的许多应用的补充。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信