A background subtraction algorithm for indoor monitoring surveillance systems

Mohamed Bachir Boubekeur, Senlin Luo, H. Labidi
{"title":"A background subtraction algorithm for indoor monitoring surveillance systems","authors":"Mohamed Bachir Boubekeur, Senlin Luo, H. Labidi","doi":"10.1109/CIVEMSA.2015.7158605","DOIUrl":null,"url":null,"abstract":"The use of the gray level intensity is a common practice for most of background subtraction algorithms due to speed matters in real time applications, and performance related considerations, yet using the RGB color representation could increase the efficiency of object detection thus the accuracy of the algorithm increases. In this paper, a non-parametric background subtraction algorithm based on samples modeling, adaptive threshold, and color layers combination is presented. The proposed framework showed an increase in performances regarding the accuracy and the robustness of the detection in indoor situations. The presented performance analysis supports the robustness of the algorithm to gradual illumination changes and ghost artifact.","PeriodicalId":348918,"journal":{"name":"2015 IEEE International Conference on Computational Intelligence and Virtual Environments for Measurement Systems and Applications (CIVEMSA)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Computational Intelligence and Virtual Environments for Measurement Systems and Applications (CIVEMSA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIVEMSA.2015.7158605","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

The use of the gray level intensity is a common practice for most of background subtraction algorithms due to speed matters in real time applications, and performance related considerations, yet using the RGB color representation could increase the efficiency of object detection thus the accuracy of the algorithm increases. In this paper, a non-parametric background subtraction algorithm based on samples modeling, adaptive threshold, and color layers combination is presented. The proposed framework showed an increase in performances regarding the accuracy and the robustness of the detection in indoor situations. The presented performance analysis supports the robustness of the algorithm to gradual illumination changes and ghost artifact.
一种用于室内监控系统的背景减法算法
由于实时应用中的速度问题和与性能相关的考虑,对于大多数背景减法算法来说,使用灰度强度是一种常见的做法,然而使用RGB颜色表示可以提高目标检测的效率,从而提高算法的准确性。提出了一种基于样本建模、自适应阈值和颜色层组合的非参数背景减法算法。所提出的框架在室内情况下的检测精度和鲁棒性方面表现出了提高。性能分析支持了该算法对渐变光照变化和鬼影伪影的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信