Facial Expression Recognition with Multi-channel Deconvolution

G. Krell, R. Niese, B. Michaelis
{"title":"Facial Expression Recognition with Multi-channel Deconvolution","authors":"G. Krell, R. Niese, B. Michaelis","doi":"10.1109/ICAPR.2009.95","DOIUrl":null,"url":null,"abstract":"Facial expression recognition is an important task in human computer interaction systems to include emotion processing.  In this work we present a Multi-Channel Deconvolution method for post processing of face expression data derived from video sequences. Photogrammetric techniques are applied to deter¬mine real world geometric measures and to build the feature vector. SVM classification is used to classify a limited number of emotions from the feature vector. A Multi-Channel Deconvolution removes ambiguities at the transitions between different classified emotions. This way, typical temporal behavior of facial expression change is considered.","PeriodicalId":443926,"journal":{"name":"2009 Seventh International Conference on Advances in Pattern Recognition","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Seventh International Conference on Advances in Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAPR.2009.95","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Facial expression recognition is an important task in human computer interaction systems to include emotion processing.  In this work we present a Multi-Channel Deconvolution method for post processing of face expression data derived from video sequences. Photogrammetric techniques are applied to deter¬mine real world geometric measures and to build the feature vector. SVM classification is used to classify a limited number of emotions from the feature vector. A Multi-Channel Deconvolution removes ambiguities at the transitions between different classified emotions. This way, typical temporal behavior of facial expression change is considered.
基于多通道反卷积的面部表情识别
面部表情识别是包括情感处理在内的人机交互系统中的一项重要任务。在这项工作中,我们提出了一种多通道反卷积方法,用于对来自视频序列的面部表情数据进行后处理。摄影测量技术应用于确定真实世界的几何测量和构建特征向量。支持向量机分类用于从特征向量中对有限数量的情绪进行分类。多通道反卷积消除了不同分类情绪之间过渡的模糊性。这样,就考虑了典型的面部表情变化的时间行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信