Multidimensional Data Mining Based on Tensor

Ryohei Yokobayashi, T. Miura
{"title":"Multidimensional Data Mining Based on Tensor","authors":"Ryohei Yokobayashi, T. Miura","doi":"10.1109/ICDMW.2018.00164","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a data manipulation method to extract multidimensional association rules in the framework of Tensor Data Model (TDM). By using the TDM, high order data structure and naive description for information retrieval are possible. Among others, we discuss multidimensional association rule mining here. Usually, association rule mining (or extraction of association rules) concerns about co-related transaction records of single predicate, and hard to examine the ones over multiple predicates since it takes heavy time-and space-complexities. Here, several operations specific to multidimensional data mining to reduce amount of description can be modeled by using TDM.","PeriodicalId":259600,"journal":{"name":"2018 IEEE International Conference on Data Mining Workshops (ICDMW)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Data Mining Workshops (ICDMW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDMW.2018.00164","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, we propose a data manipulation method to extract multidimensional association rules in the framework of Tensor Data Model (TDM). By using the TDM, high order data structure and naive description for information retrieval are possible. Among others, we discuss multidimensional association rule mining here. Usually, association rule mining (or extraction of association rules) concerns about co-related transaction records of single predicate, and hard to examine the ones over multiple predicates since it takes heavy time-and space-complexities. Here, several operations specific to multidimensional data mining to reduce amount of description can be modeled by using TDM.
基于张量的多维数据挖掘
本文提出了一种在张量数据模型(TDM)框架下提取多维关联规则的数据操作方法。通过使用TDM,可以实现高阶数据结构和朴素描述的信息检索。其中,我们在这里讨论多维关联规则挖掘。通常,关联规则挖掘(或关联规则的提取)关注的是单个谓词的关联事务记录,很难检查多个谓词上的事务记录,因为它需要大量的时间和空间复杂性。这里,可以使用TDM对特定于多维数据挖掘的几个操作进行建模,以减少描述的数量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信