Electric Field Sensor Based on a Varactor Diode/MIS/MOS Structure

M. Noras
{"title":"Electric Field Sensor Based on a Varactor Diode/MIS/MOS Structure","authors":"M. Noras","doi":"10.1109/IAS.2010.5614485","DOIUrl":null,"url":null,"abstract":"In this paper a voltage controlled variable capacitance is being proposed as a method for non-contacting measurement of electric fields. There are several microelectronic devices that can be utilized for that purpose: a varactor (a.k.a. varicap), a MOS (metal-oxide-semiconductor) or a MIS (metal-insulator-semiconductor) structure. The construction that has been tested and presented in this paper is based on a varactor diode. Although numerous non-contacting instrument designs are widely available, they either lack precision (meters utilizing Kerr or Pockel effect, rotating vane fieldmeters, fieldmeters with mechanically vibrating sensors) or are relatively expensive and complicated (electrostatic voltmeters). Other types of electric field meters such as capacitive coupling or induction instruments rely on variation of the electric quantity that is being measured, therefore they are not useful for detection and quantification of static (DC) electric charges and fields. The sensor used in the experiment described in this manuscript can be used for the DC and AC electric field measurements. The construction is very simple, therefore inexpensive, and it can be easily miniaturized.","PeriodicalId":317643,"journal":{"name":"2010 IEEE Industry Applications Society Annual Meeting","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE Industry Applications Society Annual Meeting","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IAS.2010.5614485","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

In this paper a voltage controlled variable capacitance is being proposed as a method for non-contacting measurement of electric fields. There are several microelectronic devices that can be utilized for that purpose: a varactor (a.k.a. varicap), a MOS (metal-oxide-semiconductor) or a MIS (metal-insulator-semiconductor) structure. The construction that has been tested and presented in this paper is based on a varactor diode. Although numerous non-contacting instrument designs are widely available, they either lack precision (meters utilizing Kerr or Pockel effect, rotating vane fieldmeters, fieldmeters with mechanically vibrating sensors) or are relatively expensive and complicated (electrostatic voltmeters). Other types of electric field meters such as capacitive coupling or induction instruments rely on variation of the electric quantity that is being measured, therefore they are not useful for detection and quantification of static (DC) electric charges and fields. The sensor used in the experiment described in this manuscript can be used for the DC and AC electric field measurements. The construction is very simple, therefore inexpensive, and it can be easily miniaturized.
基于变容二极管/MIS/MOS结构的电场传感器
本文提出了一种电压控制的可变电容,作为一种非接触测量电场的方法。有几种微电子器件可用于此目的:变容管(又名变容管),MOS(金属氧化物半导体)或MIS(金属绝缘体半导体)结构。本文已经测试并提出了基于变容二极管的结构。尽管许多非接触式仪器设计广泛可用,但它们要么缺乏精度(利用克尔或波克尔效应的仪表,旋转叶片现场仪表,带有机械振动传感器的现场仪表),要么相对昂贵和复杂(静电电压表)。其他类型的电场计,如电容耦合或感应仪器,依赖于被测量电量的变化,因此它们不适用于静态(直流)电荷和电场的检测和量化。本文实验中使用的传感器可用于直流和交流电场测量。结构非常简单,因此价格低廉,而且可以很容易地小型化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信