Blind source extraction of HPGe preamplifier's output signals using the thinICA algorithm: detection and identification of gamma ray emitters

A. Mekaoui, Lhachmi El Badri, E. Hamzaoui, R. Moursli
{"title":"Blind source extraction of HPGe preamplifier's output signals using the thinICA algorithm: detection and identification of gamma ray emitters","authors":"A. Mekaoui, Lhachmi El Badri, E. Hamzaoui, R. Moursli","doi":"10.12988/ASTP.2014.48117","DOIUrl":null,"url":null,"abstract":"In this study, the thin independent component analysis algorithm is used to solve the blind source extraction problem in the case where the observed mixtures are defined as the HPGe preamplifier’s output signals. These last correspond to the response of the detector to a combination of gamma radiation emitters having different levels of radioactivity. Indeed, on the basis of the performance index values, we conclude that this algorithm is the best blind source extraction method to analyze our data. Once the separation task is achieved, we evaluate the signal to noise ratio from individual columns of the mixing matrix. The values of this parameter permit us to detect easily the number of radionuclides used in the  Corresponding author 1158 Abdelhamid Mekaoui et al. experiment. Also, we calculate and plot the correlation functions between the signals recorded using one radioactive element and the extracted independent components. The interpretation of the gotten graphics allows us to associate each estimated independent component to the appropriate gamma radiation emitter.","PeriodicalId":127314,"journal":{"name":"Advanced Studies in Theoretical Physics","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Studies in Theoretical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12988/ASTP.2014.48117","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In this study, the thin independent component analysis algorithm is used to solve the blind source extraction problem in the case where the observed mixtures are defined as the HPGe preamplifier’s output signals. These last correspond to the response of the detector to a combination of gamma radiation emitters having different levels of radioactivity. Indeed, on the basis of the performance index values, we conclude that this algorithm is the best blind source extraction method to analyze our data. Once the separation task is achieved, we evaluate the signal to noise ratio from individual columns of the mixing matrix. The values of this parameter permit us to detect easily the number of radionuclides used in the  Corresponding author 1158 Abdelhamid Mekaoui et al. experiment. Also, we calculate and plot the correlation functions between the signals recorded using one radioactive element and the extracted independent components. The interpretation of the gotten graphics allows us to associate each estimated independent component to the appropriate gamma radiation emitter.
利用thinICA算法对HPGe前置放大器输出信号进行盲源提取:伽玛射线发射体的检测与识别
在本研究中,采用薄独立分量分析算法解决了将观察到的混合信号定义为HPGe前置放大器输出信号的盲源提取问题。这些最后对应于探测器对具有不同放射性水平的伽马辐射发射器组合的响应。的确,根据性能指标值,我们得出结论,该算法是分析我们数据的最佳盲源提取方法。一旦分离任务完成,我们从混合矩阵的各个列评估信噪比。该参数的值使我们能够很容易地检测到在通讯作者Abdelhamid Mekaoui等人的实验中使用的放射性核素的数量。此外,我们计算并绘制了用一个放射性元素记录的信号与提取的独立分量之间的相关函数。对得到的图形的解释使我们能够将每个估计的独立分量与适当的伽马辐射发射器联系起来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信