Randomized Contractions Meet Lean Decompositions

Marek Cygan, Pawel Komosa, D. Lokshtanov, Michal Pilipczuk, Marcin Pilipczuk, Saket Saurabh
{"title":"Randomized Contractions Meet Lean Decompositions","authors":"Marek Cygan, Pawel Komosa, D. Lokshtanov, Michal Pilipczuk, Marcin Pilipczuk, Saket Saurabh","doi":"10.1145/3426738","DOIUrl":null,"url":null,"abstract":"We show an algorithm that, given an n-vertex graph G and a parameter k, in time 2O(k log k) n O(1) finds a tree decomposition of G with the following properties: — every adhesion of the tree decomposition is of size at most k, and — every bag of the tree decomposition is (i,i)-unbreakable in G for every 1 ⩽ i ⩽ k. Here, a set X ⊆ V(G) is (a,b)-unbreakable in G if for every separation (A,B) of order at most b in G, we have |A \\cap X| ⩽ a or |B ∩ X| ⩽ a. The resulting tree decomposition has arguably best possible adhesion size bounds and unbreakability guarantees. Furthermore, the parametric factor in the running time bound is significantly smaller than in previous similar constructions. These improvements allow us to present parameterized algorithms for MINIMUM BISECTION, STEINER CUT, and STEINER MULTICUT with improved parameteric factor in the running time bound. The main technical insight is to adapt the notion of lean decompositions of Thomas and the subsequent construction algorithm of Bellenbaum and Diestel to the parameterized setting.","PeriodicalId":154047,"journal":{"name":"ACM Transactions on Algorithms (TALG)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Algorithms (TALG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3426738","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

Abstract

We show an algorithm that, given an n-vertex graph G and a parameter k, in time 2O(k log k) n O(1) finds a tree decomposition of G with the following properties: — every adhesion of the tree decomposition is of size at most k, and — every bag of the tree decomposition is (i,i)-unbreakable in G for every 1 ⩽ i ⩽ k. Here, a set X ⊆ V(G) is (a,b)-unbreakable in G if for every separation (A,B) of order at most b in G, we have |A \cap X| ⩽ a or |B ∩ X| ⩽ a. The resulting tree decomposition has arguably best possible adhesion size bounds and unbreakability guarantees. Furthermore, the parametric factor in the running time bound is significantly smaller than in previous similar constructions. These improvements allow us to present parameterized algorithms for MINIMUM BISECTION, STEINER CUT, and STEINER MULTICUT with improved parameteric factor in the running time bound. The main technical insight is to adapt the notion of lean decompositions of Thomas and the subsequent construction algorithm of Bellenbaum and Diestel to the parameterized setting.
随机收缩与精益分解
我们给出了一个算法,给定一个n顶点图G和一个参数k,在时间2O(k log k) n O(1)中找到G的树分解,它具有以下性质:——每个树分解的附着力大小最多k,每袋,树的分解是(我)牢不可破的G每1⩽我⩽k。这里,一组X⊆V (G) (a, b)牢不可破的G如果每个订单最多的分离(a, b) b G,我们有X | | \帽⩽a或b∩X | |⩽。结果树分解无疑最好的附着力大小范围和unbreakability担保。此外,在运行时间范围内的参数因子明显小于以前的类似结构。这些改进使我们能够在运行时间范围内提出最小平分、STEINER CUT和STEINER multiccut的参数化算法,并改进了参数化因子。主要的技术见解是将Thomas的精益分解概念以及随后的Bellenbaum和Diestel的构造算法适应于参数化设置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信