Decentralised fault tolerance and fault detection of modular and reconfigurable robots with joint torque sensing

S. Abdul, Guangjun Liu
{"title":"Decentralised fault tolerance and fault detection of modular and reconfigurable robots with joint torque sensing","authors":"S. Abdul, Guangjun Liu","doi":"10.1109/ROBOT.2008.4543749","DOIUrl":null,"url":null,"abstract":"A decentralised approach to fault tolerant control and fault detection is proposed for modular and reconfigurable robots with joint torque sensing. The proposed fault tolerant control scheme is independent of fault detection, avoiding the chances of delay being introduced by the detection scheme on the fault tolerant control algorithm. Based on a unique joint by joint control approach, the proposed fault tolerant controller for each module neither requires motion states of any other modules, nor the link dynamics. The addition or removal of modules does not affect the control of other joint modules. Uncalibrated torque sensor signals are utilized and actuator performance degradation is considered. Faults are detected and corrective measures are taken at the module level. An observer-based fault detection algorithm is proposed by using a residual generated from the joint velocity estimation and measured joint velocity. Simulation and experimental results have confirmed the effectiveness of the proposed fault tolerant control and fault detection schemes.","PeriodicalId":351230,"journal":{"name":"2008 IEEE International Conference on Robotics and Automation","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE International Conference on Robotics and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROBOT.2008.4543749","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

Abstract

A decentralised approach to fault tolerant control and fault detection is proposed for modular and reconfigurable robots with joint torque sensing. The proposed fault tolerant control scheme is independent of fault detection, avoiding the chances of delay being introduced by the detection scheme on the fault tolerant control algorithm. Based on a unique joint by joint control approach, the proposed fault tolerant controller for each module neither requires motion states of any other modules, nor the link dynamics. The addition or removal of modules does not affect the control of other joint modules. Uncalibrated torque sensor signals are utilized and actuator performance degradation is considered. Faults are detected and corrective measures are taken at the module level. An observer-based fault detection algorithm is proposed by using a residual generated from the joint velocity estimation and measured joint velocity. Simulation and experimental results have confirmed the effectiveness of the proposed fault tolerant control and fault detection schemes.
关节扭矩传感模块化可重构机器人的分散容错与故障检测
针对具有关节扭矩传感的模块化可重构机器人,提出了一种分散的容错控制和故障检测方法。所提出的容错控制方案独立于故障检测,避免了检测方案对容错控制算法引入延迟的可能性。基于一种独特的关节对关节控制方法,所提出的每个模块的容错控制器不需要任何其他模块的运动状态,也不需要链路的动力学。模块的增加或移除不影响对其他联合模块的控制。利用未标定力矩传感器信号,考虑致动器性能下降。在模块层面发现故障并采取纠正措施。提出了一种基于观测器的故障检测算法,该算法利用关节速度估计和关节速度实测产生的残差进行故障检测。仿真和实验结果验证了所提容错控制和故障检测方案的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信