M. Affenzeller, Michael Bögl, Lukas Fischer, F. Sobieczky, Kaifeng Yang, Jan Zenisek
{"title":"Prescriptive Analytics: When Data- and Simulation-based Models Interact in a Cooperative Way","authors":"M. Affenzeller, Michael Bögl, Lukas Fischer, F. Sobieczky, Kaifeng Yang, Jan Zenisek","doi":"10.1109/SYNASC57785.2022.00009","DOIUrl":null,"url":null,"abstract":"Business analytics is an extensive use of data acquired from diverse sources, statistical and quantitative analysis, explainable and predictive models, and fact-based management to make better strategic decisions for different stakeholders. To be able to model complex systems holistically in such a way that they can be fed into an efficient simulation-based optimization in the sense of prescriptive analytics, approaches and solutions that go beyond state-of-the-art are required. This paper introduces the basic technologies used in prescriptive analytics and proposes secure prescriptive analytics (SPA) that is based on component-based hierarchical modeling and dynamic optimization. Each element under the SPA framework is defined and illustrated by an example of production plan optimization.","PeriodicalId":446065,"journal":{"name":"2022 24th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 24th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SYNASC57785.2022.00009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Business analytics is an extensive use of data acquired from diverse sources, statistical and quantitative analysis, explainable and predictive models, and fact-based management to make better strategic decisions for different stakeholders. To be able to model complex systems holistically in such a way that they can be fed into an efficient simulation-based optimization in the sense of prescriptive analytics, approaches and solutions that go beyond state-of-the-art are required. This paper introduces the basic technologies used in prescriptive analytics and proposes secure prescriptive analytics (SPA) that is based on component-based hierarchical modeling and dynamic optimization. Each element under the SPA framework is defined and illustrated by an example of production plan optimization.