Prescriptive Analytics: When Data- and Simulation-based Models Interact in a Cooperative Way

M. Affenzeller, Michael Bögl, Lukas Fischer, F. Sobieczky, Kaifeng Yang, Jan Zenisek
{"title":"Prescriptive Analytics: When Data- and Simulation-based Models Interact in a Cooperative Way","authors":"M. Affenzeller, Michael Bögl, Lukas Fischer, F. Sobieczky, Kaifeng Yang, Jan Zenisek","doi":"10.1109/SYNASC57785.2022.00009","DOIUrl":null,"url":null,"abstract":"Business analytics is an extensive use of data acquired from diverse sources, statistical and quantitative analysis, explainable and predictive models, and fact-based management to make better strategic decisions for different stakeholders. To be able to model complex systems holistically in such a way that they can be fed into an efficient simulation-based optimization in the sense of prescriptive analytics, approaches and solutions that go beyond state-of-the-art are required. This paper introduces the basic technologies used in prescriptive analytics and proposes secure prescriptive analytics (SPA) that is based on component-based hierarchical modeling and dynamic optimization. Each element under the SPA framework is defined and illustrated by an example of production plan optimization.","PeriodicalId":446065,"journal":{"name":"2022 24th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 24th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SYNASC57785.2022.00009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Business analytics is an extensive use of data acquired from diverse sources, statistical and quantitative analysis, explainable and predictive models, and fact-based management to make better strategic decisions for different stakeholders. To be able to model complex systems holistically in such a way that they can be fed into an efficient simulation-based optimization in the sense of prescriptive analytics, approaches and solutions that go beyond state-of-the-art are required. This paper introduces the basic technologies used in prescriptive analytics and proposes secure prescriptive analytics (SPA) that is based on component-based hierarchical modeling and dynamic optimization. Each element under the SPA framework is defined and illustrated by an example of production plan optimization.
规定性分析:当基于数据和模拟的模型以合作的方式交互时
商业分析是广泛使用从不同来源获得的数据,统计和定量分析,可解释和预测模型,以及基于事实的管理,为不同的利益相关者做出更好的战略决策。为了能够以这样一种方式对复杂系统进行整体建模,使它们能够在规定性分析的意义上进入有效的基于模拟的优化,需要超越最先进技术的方法和解决方案。介绍了规范分析中使用的基本技术,提出了基于构件分层建模和动态优化的安全规范分析(SPA)。对SPA框架下的每个要素进行了定义,并通过生产计划优化实例进行了说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信