Drag Reduction on the Basis of the Area Rule of the Small-Scale Supersonic Flight Experiment Vehicle Being Developed at Muroran Institute of Technology

Yukitaka Yamazaki, Kazuhide Mizobata, K. Higashino
{"title":"Drag Reduction on the Basis of the Area Rule of the Small-Scale Supersonic Flight Experiment Vehicle Being Developed at Muroran Institute of Technology","authors":"Yukitaka Yamazaki, Kazuhide Mizobata, K. Higashino","doi":"10.2322/TASTJ.17.127","DOIUrl":null,"url":null,"abstract":"A small-scale supersonic flight experiment vehicle (OWASHI) is being developed at Muroran Institute of Technology as a flying testbed for verification of innovative technologies for high speed atmospheric flights which are essential to nextgeneration aerospace transportation systems. The second-generation configuration M2011 of the vehicle with a single Air Turbo Ramjet Gas-generator-cycle (ATR-GG) engine has been proposed. Its transonic thrust margin has been predicted to be insufficient, therefore drag reduction in the transonic regime is quite crucial for attainability of supersonic flights. In this study, we propose configuration modifications for drag reduction on the basis of the so-called area rule, and assess their effects through wave drag analysis, wind tunnel tests, and CFD analysis. As a result, the area-rule-based configurations have less drag than the baseline configuration M2011. However, the effects of the proposed bottleneck on the fuselage below the main wing are smaller than predicted. It would be caused by the drag due to separation and shocks around the bottleneck. It is necessary to redesign the area-rule-based bottleneck to be smoother.","PeriodicalId":120185,"journal":{"name":"TRANSACTIONS OF THE JAPAN SOCIETY FOR AERONAUTICAL AND SPACE SCIENCES, AEROSPACE TECHNOLOGY JAPAN","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"TRANSACTIONS OF THE JAPAN SOCIETY FOR AERONAUTICAL AND SPACE SCIENCES, AEROSPACE TECHNOLOGY JAPAN","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2322/TASTJ.17.127","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

A small-scale supersonic flight experiment vehicle (OWASHI) is being developed at Muroran Institute of Technology as a flying testbed for verification of innovative technologies for high speed atmospheric flights which are essential to nextgeneration aerospace transportation systems. The second-generation configuration M2011 of the vehicle with a single Air Turbo Ramjet Gas-generator-cycle (ATR-GG) engine has been proposed. Its transonic thrust margin has been predicted to be insufficient, therefore drag reduction in the transonic regime is quite crucial for attainability of supersonic flights. In this study, we propose configuration modifications for drag reduction on the basis of the so-called area rule, and assess their effects through wave drag analysis, wind tunnel tests, and CFD analysis. As a result, the area-rule-based configurations have less drag than the baseline configuration M2011. However, the effects of the proposed bottleneck on the fuselage below the main wing are smaller than predicted. It would be caused by the drag due to separation and shocks around the bottleneck. It is necessary to redesign the area-rule-based bottleneck to be smoother.
基于面积规律的小型超声速飞行实验飞行器减阻研究
Muroran理工学院正在开发一种小型超音速飞行实验飞行器(OWASHI),作为验证对下一代航空航天运输系统至关重要的高速大气飞行创新技术的飞行试验台。提出了采用单涡轮增压冲压发动机(ATR-GG)的第二代配置M2011。其跨声速推力余量预计不足,因此跨声速减阻对超声速飞行的实现至关重要。在本研究中,我们根据所谓的面积规则提出了减阻的配置修改,并通过波阻分析、风洞试验和CFD分析来评估其效果。因此,基于区域规则的配置比基线配置M2011的阻力更小。然而,提出的瓶颈对主翼以下机身的影响比预测的要小。这是由于瓶颈周围的分离和冲击造成的阻力造成的。有必要重新设计基于区域规则的瓶颈,使其更平滑。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信