Incremental methods for simple problems in time series: algorithms and experiments

Xiaojian Zhao, Xin Zhang, T. Neylon, D. Shasha
{"title":"Incremental methods for simple problems in time series: algorithms and experiments","authors":"Xiaojian Zhao, Xin Zhang, T. Neylon, D. Shasha","doi":"10.1109/IDEAS.2005.35","DOIUrl":null,"url":null,"abstract":"A time series (or equivalently a data stream) consists of data arriving in time order. Single or multiple data streams arise in fields including physics, finance, medicine, and music, to name a few. Often the data comes from sensors (in physics and medicine for example) whose data rates continue to improve dramatically as sensor technology improves and as the number of sensors increases. So fast algorithms become ever more critical in order to distill knowledge from the data. This paper presents our recent work regarding the incremental computation of various primitives: windowed correlation, matching pursuit, sparse null space discovery and elastic burst detection. The incremental idea reflects the fact that recent data is more important than older data. Our StatStream system contains an implementation of these algorithms, permitting us to do empirical studies on both simulated and real data.","PeriodicalId":357591,"journal":{"name":"9th International Database Engineering & Application Symposium (IDEAS'05)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"9th International Database Engineering & Application Symposium (IDEAS'05)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IDEAS.2005.35","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

A time series (or equivalently a data stream) consists of data arriving in time order. Single or multiple data streams arise in fields including physics, finance, medicine, and music, to name a few. Often the data comes from sensors (in physics and medicine for example) whose data rates continue to improve dramatically as sensor technology improves and as the number of sensors increases. So fast algorithms become ever more critical in order to distill knowledge from the data. This paper presents our recent work regarding the incremental computation of various primitives: windowed correlation, matching pursuit, sparse null space discovery and elastic burst detection. The incremental idea reflects the fact that recent data is more important than older data. Our StatStream system contains an implementation of these algorithms, permitting us to do empirical studies on both simulated and real data.
时间序列中简单问题的增量方法:算法和实验
时间序列(或等价的数据流)由按时间顺序到达的数据组成。单个或多个数据流出现在物理、金融、医学和音乐等领域。通常数据来自传感器(例如,在物理和医学中),随着传感器技术的改进和传感器数量的增加,传感器的数据速率不断显著提高。因此,为了从数据中提取知识,快速算法变得越来越重要。本文介绍了我们最近在各种原语的增量计算方面的工作:窗口相关,匹配追踪,稀疏零空间发现和弹性突发检测。增量思想反映了这样一个事实,即最近的数据比以前的数据更重要。我们的StatStream系统包含了这些算法的实现,允许我们对模拟和真实数据进行实证研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信