{"title":"Local ensemble weighting in the context of time series forecasting using XCSF","authors":"M. Sommer, Anthony Stein, J. Hähner","doi":"10.1109/SSCI.2016.7849974","DOIUrl":null,"url":null,"abstract":"Time series forecasting constitutes an important aspect of any kind of technical system, since the underlying stochastic processes vary over time. Extensive efforts for designing self-adaptive learning systems have been made, to take system designers out of the loop. One goal of such systems is to transfer design-time decisions, e.g. parametrisation, to the run-time. By means of forecasting the succeeding system state, the system itself is enabled to anticipate, how to reconfigure to handle upcoming conditions. Ensemble forecasting is a specific means of combining and weighting the forecasts of multiple independent forecast methods. This concept has proven successful in various domains today. In this work, we present our self-adaptive forecast module for ensemble forecasting of univariate time series and draw a picture of how the eXtended Classifier System for Function approximation (XCSF) can be utilised as a novel weighting approach in this context. We elaborate on the fundamental ideas and evaluate our proposed technique on the basis of several time series with different characteristics.","PeriodicalId":120288,"journal":{"name":"2016 IEEE Symposium Series on Computational Intelligence (SSCI)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Symposium Series on Computational Intelligence (SSCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSCI.2016.7849974","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
Time series forecasting constitutes an important aspect of any kind of technical system, since the underlying stochastic processes vary over time. Extensive efforts for designing self-adaptive learning systems have been made, to take system designers out of the loop. One goal of such systems is to transfer design-time decisions, e.g. parametrisation, to the run-time. By means of forecasting the succeeding system state, the system itself is enabled to anticipate, how to reconfigure to handle upcoming conditions. Ensemble forecasting is a specific means of combining and weighting the forecasts of multiple independent forecast methods. This concept has proven successful in various domains today. In this work, we present our self-adaptive forecast module for ensemble forecasting of univariate time series and draw a picture of how the eXtended Classifier System for Function approximation (XCSF) can be utilised as a novel weighting approach in this context. We elaborate on the fundamental ideas and evaluate our proposed technique on the basis of several time series with different characteristics.