A. Tomar, Animesh Sharma, Aditya Shrivastava, Anurag Rana, Pradeep Yadav
{"title":"A Comparative Analysis of Activation Function, Evaluating their Accuracy and Efficiency when Applied to Miscellaneous Datasets","authors":"A. Tomar, Animesh Sharma, Aditya Shrivastava, Anurag Rana, Pradeep Yadav","doi":"10.1109/ICAAIC56838.2023.10140823","DOIUrl":null,"url":null,"abstract":"Numerous deep learning architectures have been developed as a result of activation functions (AFs), which are crucial for allowing deep neural networks to deal with intricate real-world problems. In order to achieve cutting-edge performance, AFs play a crucial role by facilitating diverse computations between the hidden and output layers. This paper presents a comparison between various activation function like sigmoid, tanh, ReLU, Softmax on thedatasetMNIST, CIFAR-10 and IRIS and their accuracy on these datasets with minimum errors. These observations offer valuable insights into determining the most suitable activation function for diverse scenarios and datasets, thereby providing a comprehensive understanding of the optimal activation function for distinct situations.","PeriodicalId":267906,"journal":{"name":"2023 2nd International Conference on Applied Artificial Intelligence and Computing (ICAAIC)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 2nd International Conference on Applied Artificial Intelligence and Computing (ICAAIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAAIC56838.2023.10140823","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Numerous deep learning architectures have been developed as a result of activation functions (AFs), which are crucial for allowing deep neural networks to deal with intricate real-world problems. In order to achieve cutting-edge performance, AFs play a crucial role by facilitating diverse computations between the hidden and output layers. This paper presents a comparison between various activation function like sigmoid, tanh, ReLU, Softmax on thedatasetMNIST, CIFAR-10 and IRIS and their accuracy on these datasets with minimum errors. These observations offer valuable insights into determining the most suitable activation function for diverse scenarios and datasets, thereby providing a comprehensive understanding of the optimal activation function for distinct situations.