Task-Independent EEG based Subject Identification using Auditory Stimulus

D. Vinothkumar, Mari Ganesh Kumar, Abhishek Kumar, H. Gupta, S. SaranyaM, M. Sur, H. Murthy
{"title":"Task-Independent EEG based Subject Identification using Auditory Stimulus","authors":"D. Vinothkumar, Mari Ganesh Kumar, Abhishek Kumar, H. Gupta, S. SaranyaM, M. Sur, H. Murthy","doi":"10.21437/SMM.2018-6","DOIUrl":null,"url":null,"abstract":"Recent studies have shown that task-specific electroencephalography (EEG) can be used as a reliable biometric. This paper extends this study to task-independent EEG with auditory stimuli. Data collected from 40 subjects in response to various types of audio stimuli, using a 128 channel EEG system is presented to different classifiers, namely, k-nearest neighbor (k-NN), arti-ficial neural network (ANN) and universal background model - Gaussian mixture model (UBM-GMM). It is observed that k-NN and ANN perform well when testing is performed intrasession, while UBM-GMM framework is more robust when testing is performed intersession. This can be attributed to the fact that the correspondence of the sensor locations across sessions is only approximate. It is also observed that EEG from parietal and temporal regions contain more subject information although the performance using all the 128 channel data is marginally better.","PeriodicalId":158743,"journal":{"name":"Workshop on Speech, Music and Mind (SMM 2018)","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop on Speech, Music and Mind (SMM 2018)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21437/SMM.2018-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Recent studies have shown that task-specific electroencephalography (EEG) can be used as a reliable biometric. This paper extends this study to task-independent EEG with auditory stimuli. Data collected from 40 subjects in response to various types of audio stimuli, using a 128 channel EEG system is presented to different classifiers, namely, k-nearest neighbor (k-NN), arti-ficial neural network (ANN) and universal background model - Gaussian mixture model (UBM-GMM). It is observed that k-NN and ANN perform well when testing is performed intrasession, while UBM-GMM framework is more robust when testing is performed intersession. This can be attributed to the fact that the correspondence of the sensor locations across sessions is only approximate. It is also observed that EEG from parietal and temporal regions contain more subject information although the performance using all the 128 channel data is marginally better.
基于听觉刺激的任务无关脑电主体识别
最近的研究表明,任务特异性脑电图(EEG)可以作为一种可靠的生物识别方法。本文将此研究扩展到具有听觉刺激的任务无关脑电图。采用128通道脑电系统采集了40名被试在不同类型音频刺激下的脑电信号数据,并将其提交给不同的分类器,即k-最近邻(k-NN)、人工神经网络(ANN)和通用背景模型-高斯混合模型(UBM-GMM)。观察到,k-NN和ANN在会话内执行测试时表现良好,而UBM-GMM框架在会话间执行测试时更稳健。这可以归因于这样一个事实,即传感器位置在会话之间的对应关系只是近似的。虽然使用所有128通道数据的性能略好,但顶叶和颞叶区域的EEG包含更多的主题信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信