Analysis of spectral clustering algorithms for linear and nonlinear time series

M. Tucci, Marco Raugi
{"title":"Analysis of spectral clustering algorithms for linear and nonlinear time series","authors":"M. Tucci, Marco Raugi","doi":"10.1109/ISDA.2011.6121776","DOIUrl":null,"url":null,"abstract":"In this work a modified spectral clustering algorithm for time-series data is introduced. The presented modification is to replace the distance measure for static data with an appropriate one for time series. The performed analysis considers several distance measures for time series, and it includes the use of different similarity graphs and graph Laplacians. We consider the discrimination of time-series generated using different linear ARMA models, and we also investigated the clustering of nonlinear time series generated using autoregressive conditional heteroskedasticity (ARCH) models. The Hubert-Arabie adjusted Rand's index is used as an external criterion for evaluating the partitions obtained with modified spectral clustering and various linkage algorithms. Guidelines are discussed, in particular the use of cepstral coefficients proves to be efficient both for linear and nonlinear data.","PeriodicalId":433207,"journal":{"name":"2011 11th International Conference on Intelligent Systems Design and Applications","volume":"114 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 11th International Conference on Intelligent Systems Design and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISDA.2011.6121776","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

In this work a modified spectral clustering algorithm for time-series data is introduced. The presented modification is to replace the distance measure for static data with an appropriate one for time series. The performed analysis considers several distance measures for time series, and it includes the use of different similarity graphs and graph Laplacians. We consider the discrimination of time-series generated using different linear ARMA models, and we also investigated the clustering of nonlinear time series generated using autoregressive conditional heteroskedasticity (ARCH) models. The Hubert-Arabie adjusted Rand's index is used as an external criterion for evaluating the partitions obtained with modified spectral clustering and various linkage algorithms. Guidelines are discussed, in particular the use of cepstral coefficients proves to be efficient both for linear and nonlinear data.
线性和非线性时间序列的谱聚类算法分析
本文介绍了一种改进的时间序列数据光谱聚类算法。本文提出的改进方法是将静态数据的距离度量替换为时间序列的距离度量。所执行的分析考虑了时间序列的几种距离度量,它包括使用不同的相似图和图拉普拉斯算子。我们考虑了不同线性ARMA模型生成的时间序列的区别,并研究了自回归条件异方差(ARCH)模型生成的非线性时间序列的聚类问题。采用Hubert-Arabie调整后的Rand指数作为评价改进谱聚类和各种联动算法得到的分区的外部准则。讨论了准则,特别是使用倒谱系数被证明是有效的线性和非线性数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信