Web-based statistical fact checking of textual documents

SMUC '10 Pub Date : 2010-10-30 DOI:10.1145/1871985.1872002
A. Magdy, N. Wanas
{"title":"Web-based statistical fact checking of textual documents","authors":"A. Magdy, N. Wanas","doi":"10.1145/1871985.1872002","DOIUrl":null,"url":null,"abstract":"User generated content has been growing tremendously in recent years. This content reflects the interests and the diversity of online users. In turn, the diversity among internet users is also reflected in the quality of the content being published online. This increases the need to develop means to gauge the support available for content posted online. In this work, we aim to make use of the web-content to calculate a statistical support score for textual documents. In the proposed algorithm, phrases representing key facts are extracted to construct basic elements of the document. Search is used thereon to validate the support available for these elements online, leading to assigning an overall score for each document. Experimental results have shown a difference between the score distribution of factual news data and false facts data. This indicates that the approach seems to be a promising seed for distinguishing different articles based on the content.","PeriodicalId":244822,"journal":{"name":"SMUC '10","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"56","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SMUC '10","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1871985.1872002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 56

Abstract

User generated content has been growing tremendously in recent years. This content reflects the interests and the diversity of online users. In turn, the diversity among internet users is also reflected in the quality of the content being published online. This increases the need to develop means to gauge the support available for content posted online. In this work, we aim to make use of the web-content to calculate a statistical support score for textual documents. In the proposed algorithm, phrases representing key facts are extracted to construct basic elements of the document. Search is used thereon to validate the support available for these elements online, leading to assigning an overall score for each document. Experimental results have shown a difference between the score distribution of factual news data and false facts data. This indicates that the approach seems to be a promising seed for distinguishing different articles based on the content.
基于web的文本文档统计事实检查
近年来,用户生成的内容增长迅猛。这些内容反映了在线用户的兴趣和多样性。反过来,互联网用户的多样性也反映在网上发布的内容的质量上。这增加了开发方法来衡量对在线发布的内容的可用支持的需要。在这项工作中,我们的目标是利用web内容来计算文本文档的统计支持分数。在该算法中,提取表示关键事实的短语来构建文档的基本元素。在此基础上使用搜索来验证对这些元素的在线可用支持,从而为每个文档分配总体分数。实验结果表明,事实新闻数据与虚假新闻数据的得分分布存在差异。这表明,该方法似乎是基于内容区分不同文章的有希望的种子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信