A New Fuzzy Inertia Weight Particle Swarm Optimization

P. Yadmellat, S. Salehizadeh, M. Menhaj
{"title":"A New Fuzzy Inertia Weight Particle Swarm Optimization","authors":"P. Yadmellat, S. Salehizadeh, M. Menhaj","doi":"10.1109/CINC.2009.180","DOIUrl":null,"url":null,"abstract":"This paper proposes a new Fuzzy tuned Inertia weight Particle Swarm Optimization (FIPSO) which remarkably outperforms the standard PSO, previous fuzzy as well as adaptive based PSO methods. Two benchmark functions with asymmetric initial range settings are used to validate the proposed algorithm and compare its performance with those of the other tuned parameter PSO algorithms. Numerical results indicate that FIPSO is competitive due to its ability to increase search space diversity as well as finding the functions’ global optima and a better convergence performance.","PeriodicalId":173506,"journal":{"name":"2009 International Conference on Computational Intelligence and Natural Computing","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Conference on Computational Intelligence and Natural Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CINC.2009.180","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

This paper proposes a new Fuzzy tuned Inertia weight Particle Swarm Optimization (FIPSO) which remarkably outperforms the standard PSO, previous fuzzy as well as adaptive based PSO methods. Two benchmark functions with asymmetric initial range settings are used to validate the proposed algorithm and compare its performance with those of the other tuned parameter PSO algorithms. Numerical results indicate that FIPSO is competitive due to its ability to increase search space diversity as well as finding the functions’ global optima and a better convergence performance.
一种新的模糊惯性权粒子群优化方法
本文提出了一种新的模糊调谐惯性权粒子群优化算法(FIPSO),该算法明显优于标准粒子群优化算法、以往的模糊粒子群优化算法以及基于自适应的粒子群优化算法。采用非对称初始范围设置的两个基准函数验证了该算法,并将其性能与其他调优参数粒子群算法进行了比较。数值结果表明,该算法具有提高搜索空间多样性和寻找函数全局最优的能力和较好的收敛性能,具有一定的竞争力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信