A New Approach to Reducing the Distortion of the Digital Image Natural Model in the DCT Domain When Embedding Information According to the QIM Method

Олег Олегович Евсютин, O. Evsutin, Анна Мельман, A. Melman, Роман Валерьевич Мещеряков, R. Meshcheryakov, Анастасия Олеговна Исхакова, Anastasia Ishakova
{"title":"A New Approach to Reducing the Distortion of the Digital Image Natural Model in the DCT Domain When Embedding Information According to the QIM Method","authors":"Олег Олегович Евсютин, O. Evsutin, Анна Мельман, A. Melman, Роман Валерьевич Мещеряков, R. Meshcheryakov, Анастасия Олеговна Исхакова, Anastasia Ishakova","doi":"10.30987/graphicon-2019-2-268-272","DOIUrl":null,"url":null,"abstract":"One of the areas of digital image processing is the steganographic embedding of additional information into them. Digital steganography methods are used to ensure the information confidentiality, as well as to track the distribution of digital content on the Internet. Main indicators of the steganographic embedding effectiveness are invisibility to the human eye, characterized by the PSNR metric, and embedding capacity. However, even with full visual stealth of embedding, its presence may produce a distortion of the digital image natural model in the frequency domain. The article presents a new approach to reducing the distortion of the digital image natural model in the field of discrete cosine transform (DCT) when embedding information using the classical QIM method. The results of the experiments show that the proposed approach allows reducing the distortion of the histograms of the distribution of DCT coefficients, and thereby eliminating the unmasking signs of embedding.","PeriodicalId":409819,"journal":{"name":"GraphiCon'2019 Proceedings. Volume 2","volume":"379 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"GraphiCon'2019 Proceedings. Volume 2","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30987/graphicon-2019-2-268-272","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

One of the areas of digital image processing is the steganographic embedding of additional information into them. Digital steganography methods are used to ensure the information confidentiality, as well as to track the distribution of digital content on the Internet. Main indicators of the steganographic embedding effectiveness are invisibility to the human eye, characterized by the PSNR metric, and embedding capacity. However, even with full visual stealth of embedding, its presence may produce a distortion of the digital image natural model in the frequency domain. The article presents a new approach to reducing the distortion of the digital image natural model in the field of discrete cosine transform (DCT) when embedding information using the classical QIM method. The results of the experiments show that the proposed approach allows reducing the distortion of the histograms of the distribution of DCT coefficients, and thereby eliminating the unmasking signs of embedding.
基于QIM方法降低DCT域数字图像自然模型嵌入信息时失真的新方法
数字图像处理的一个领域是在其中嵌入附加信息的隐写术。数字隐写技术用于保证信息的保密性,以及跟踪互联网上数字内容的分布。隐写嵌入效果的主要指标是人眼不可见性、PSNR指标和嵌入容量。然而,即使采用了完全的视觉隐身嵌入,它的存在也会对数字图像的频域自然模型产生畸变。在离散余弦变换(DCT)领域,利用经典的QIM方法,提出了一种减少数字图像自然模型在嵌入信息时失真的新方法。实验结果表明,该方法可以减少DCT系数分布直方图的失真,从而消除嵌入的揭膜现象。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信