Comparative analysis of k-means and self organizing map clustering on boiler process data

S. Saraswathi, L. Sivakumar
{"title":"Comparative analysis of k-means and self organizing map clustering on boiler process data","authors":"S. Saraswathi, L. Sivakumar","doi":"10.1109/ICCCI.2014.6921747","DOIUrl":null,"url":null,"abstract":"The complication exists almost in all the business applications to find out the optimal solution and envisage how the solution behaves for the changes in the equipped parameters. The engineering processing problem will have a large number of solutions out of which some are feasible and some are infeasible solutions. The aim of optimizing task is to get the best solution out of the feasible solutions set. K-means clustering method and self organizing map was implemented on boiler dataset. Results were analyzed in order to determine valuable patterns.","PeriodicalId":244242,"journal":{"name":"2014 International Conference on Computer Communication and Informatics","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Computer Communication and Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCCI.2014.6921747","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The complication exists almost in all the business applications to find out the optimal solution and envisage how the solution behaves for the changes in the equipped parameters. The engineering processing problem will have a large number of solutions out of which some are feasible and some are infeasible solutions. The aim of optimizing task is to get the best solution out of the feasible solutions set. K-means clustering method and self organizing map was implemented on boiler dataset. Results were analyzed in order to determine valuable patterns.
锅炉过程数据k-means与自组织映射聚类的比较分析
在几乎所有的业务应用程序中,寻找最优解并设想解决方案在配置参数变化时的行为都是复杂的。工程加工问题会有大量的解决方案,其中有些是可行的,有些是不可行的。优化任务的目的是得到最好的解决方案的可行的解决方案。在锅炉数据集上实现了K-means聚类方法和自组织映射。对结果进行分析,以确定有价值的模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信