Some New Optimal Pairings

He Shang, Mingqiang Wang
{"title":"Some New Optimal Pairings","authors":"He Shang, Mingqiang Wang","doi":"10.1109/CIS.2010.90","DOIUrl":null,"url":null,"abstract":"The Ate pairing can be computed efficiently on ordinary elliptic curves with small value of the trace of Frobenius $\\bf t$. The ${\\bf Ate_i}$ pairing generalizes the Ate pairing, and can possibly shorten the Miller loop to be as small as ${\\bf r^{\\frac{1}{\\varphi(k)}}}$ on some special pairing-friendly curves with large value of Frobenius $\\bf t$. However, not all pairing-friendly curves have this property. In this paper, we generalize the ${\\bf Ate_i}$ pairing further. By our method, we can shorten the the Miller loop to be nearly ${\\bf r^{\\frac{1}{\\varphi(k)}}}$ on some pairing-friendly curves, while the ${\\bf Ate_i}$ pairing can not reach.","PeriodicalId":420515,"journal":{"name":"2010 International Conference on Computational Intelligence and Security","volume":"716 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Computational Intelligence and Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIS.2010.90","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The Ate pairing can be computed efficiently on ordinary elliptic curves with small value of the trace of Frobenius $\bf t$. The ${\bf Ate_i}$ pairing generalizes the Ate pairing, and can possibly shorten the Miller loop to be as small as ${\bf r^{\frac{1}{\varphi(k)}}}$ on some special pairing-friendly curves with large value of Frobenius $\bf t$. However, not all pairing-friendly curves have this property. In this paper, we generalize the ${\bf Ate_i}$ pairing further. By our method, we can shorten the the Miller loop to be nearly ${\bf r^{\frac{1}{\varphi(k)}}}$ on some pairing-friendly curves, while the ${\bf Ate_i}$ pairing can not reach.
一些新的最优配对
在Frobenius轨迹值较小的普通椭圆曲线上可以有效地计算Ate对$\bf t$。${\bf Ate_i}$配对推广了Ate配对,在一些特殊的具有较大Frobenius $\bf t$值的配对友好曲线上,可以将Miller环缩短到${\bf r^{\frac{1}{\varphi(k)}}}$。然而,并不是所有的配对友好曲线都有这个性质。本文进一步推广了${\bf Ate_i}$配对。通过本文的方法,我们可以在一些配对友好的曲线上将米勒环缩短到接近${\bf r^{\frac{1}{\varphi(k)}}}$,而在${\bf Ate_i}$配对不能达到。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信