Imbalanced Fault Diagnosis of Bearing-Rotor System via Normalized Conditional Variational Auto-Encoder with Adaptive Focal Loss

Xiaoli Zhao, Jianyong Yao, W. Deng, M. Jia
{"title":"Imbalanced Fault Diagnosis of Bearing-Rotor System via Normalized Conditional Variational Auto-Encoder with Adaptive Focal Loss","authors":"Xiaoli Zhao, Jianyong Yao, W. Deng, M. Jia","doi":"10.1109/PHM-Nanjing52125.2021.9612924","DOIUrl":null,"url":null,"abstract":"The distribution of mechanical system health data monitored in the industrial field is imbalanced mainly. To this end, this paper designs a new imbalanced fault diagnosis framework of the mechanical system based on Normalized Conditional Variational Auto-Encoder with Adaptive Focal Loss (NCVAE-AFL). The core of this diagnostic framework is to use the designed NCVAE model to enhance the data’s feature learning ability. The multi-layer sensitive feature vector of the data can be extracted, the generalization performance of the diagnostic model is further improved. Meanwhile, a new Adaptive Focus Loss (AFL) function is designed for NCVAE model, which focuses training on a few samples of health conditions that are difficult to classify and balance the diagnosis difficulty of samples of different categories. Finally, the double-span rotor-bearing system fault simulation experiment platform verifies the effectiveness and superiority of the proposed NCVAE-AFL algorithm and its diagnostic framework.","PeriodicalId":436428,"journal":{"name":"2021 Global Reliability and Prognostics and Health Management (PHM-Nanjing)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Global Reliability and Prognostics and Health Management (PHM-Nanjing)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PHM-Nanjing52125.2021.9612924","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The distribution of mechanical system health data monitored in the industrial field is imbalanced mainly. To this end, this paper designs a new imbalanced fault diagnosis framework of the mechanical system based on Normalized Conditional Variational Auto-Encoder with Adaptive Focal Loss (NCVAE-AFL). The core of this diagnostic framework is to use the designed NCVAE model to enhance the data’s feature learning ability. The multi-layer sensitive feature vector of the data can be extracted, the generalization performance of the diagnostic model is further improved. Meanwhile, a new Adaptive Focus Loss (AFL) function is designed for NCVAE model, which focuses training on a few samples of health conditions that are difficult to classify and balance the diagnosis difficulty of samples of different categories. Finally, the double-span rotor-bearing system fault simulation experiment platform verifies the effectiveness and superiority of the proposed NCVAE-AFL algorithm and its diagnostic framework.
自适应焦损归一化条件变分自编码器诊断轴承-转子系统不平衡故障
工业现场监测的机械系统健康数据分布主要是不平衡的。为此,本文设计了一种基于归一化条件变分自适应焦损编码器(NCVAE-AFL)的机械系统不平衡故障诊断新框架。该诊断框架的核心是利用所设计的NCVAE模型来增强数据的特征学习能力。提取出数据的多层敏感特征向量,进一步提高了诊断模型的泛化性能。同时,针对NCVAE模型设计了一种新的自适应焦点损失(AFL)函数,该函数将训练重点放在少数难以分类的健康状况样本上,并平衡不同类别样本的诊断难度。最后,通过双跨转子-轴承系统故障仿真实验平台验证了所提出的NCVAE-AFL算法及其诊断框架的有效性和优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信