Gain Enhancement of Microstrip Antenna Using Genetic Algorithm: A Review

A’isya Nur Aulia Yusuf, Prima Dewi Purnamasari, F. Zulkifli
{"title":"Gain Enhancement of Microstrip Antenna Using Genetic Algorithm: A Review","authors":"A’isya Nur Aulia Yusuf, Prima Dewi Purnamasari, F. Zulkifli","doi":"10.1109/ICRAMET53537.2021.9650491","DOIUrl":null,"url":null,"abstract":"In research on microstrip patch antennas, increasing antenna gain is a challenge. Various techniques have been carried out to increase the gain of microstrip antennas. However, most of the implementations of this method generally requires computer resources with high computing and storage space and takes a lot of time to run the simulation. Therefore, machine learning methods are used to optimize the antenna design to reduce the iteration process and increase antenna gain. Genetic algorithm is one of the efficient optimization methods and has been widely used in the electromagnetic field. This paper will review and compare the implementation of genetic algorithms in the microstrip antenna design process to improve antenna gain.","PeriodicalId":269759,"journal":{"name":"2021 International Conference on Radar, Antenna, Microwave, Electronics, and Telecommunications (ICRAMET)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Radar, Antenna, Microwave, Electronics, and Telecommunications (ICRAMET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRAMET53537.2021.9650491","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In research on microstrip patch antennas, increasing antenna gain is a challenge. Various techniques have been carried out to increase the gain of microstrip antennas. However, most of the implementations of this method generally requires computer resources with high computing and storage space and takes a lot of time to run the simulation. Therefore, machine learning methods are used to optimize the antenna design to reduce the iteration process and increase antenna gain. Genetic algorithm is one of the efficient optimization methods and has been widely used in the electromagnetic field. This paper will review and compare the implementation of genetic algorithms in the microstrip antenna design process to improve antenna gain.
基于遗传算法的微带天线增益增强研究进展
在微带贴片天线的研究中,提高天线增益是一个难题。为了提高微带天线的增益,已经采用了各种技术。然而,该方法的大多数实现通常需要具有高计算和存储空间的计算机资源,并且需要大量的时间来运行仿真。因此,采用机器学习方法优化天线设计,减少迭代过程,提高天线增益。遗传算法是一种高效的优化方法,在电磁场中得到了广泛的应用。本文将回顾和比较遗传算法在微带天线设计过程中的实现,以提高天线增益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信