Constructing 2n-1-Point Ternary Interpolatory Subdivision Schemes by Using Variation of Constants

Hongchan Zheng, Meigui Hu, Guohua Peng
{"title":"Constructing 2n-1-Point Ternary Interpolatory Subdivision Schemes by Using Variation of Constants","authors":"Hongchan Zheng, Meigui Hu, Guohua Peng","doi":"10.1109/CISE.2009.5364446","DOIUrl":null,"url":null,"abstract":"Based on Lagrange polynomials and variation of constants, we devise a novel 2n-1-point interpolatory ternary subdivision scheme that reproduces polynomials of degree 2n-2. We illustrate the technique with a 3-point ternary interpolatory subdivision scheme which can rebuild Hassan and Dodgson’s interpolating 3-point ternary subdivision scheme and a new 5point ternary interpolatory subdivision scheme which can achieve C-continuity. The smoothness of the new schemes is proved using Laurent polynomial method. Keywordsternary subdivision; Lagrange polynomial; variation of constant","PeriodicalId":135441,"journal":{"name":"2009 International Conference on Computational Intelligence and Software Engineering","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Conference on Computational Intelligence and Software Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISE.2009.5364446","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

Abstract

Based on Lagrange polynomials and variation of constants, we devise a novel 2n-1-point interpolatory ternary subdivision scheme that reproduces polynomials of degree 2n-2. We illustrate the technique with a 3-point ternary interpolatory subdivision scheme which can rebuild Hassan and Dodgson’s interpolating 3-point ternary subdivision scheme and a new 5point ternary interpolatory subdivision scheme which can achieve C-continuity. The smoothness of the new schemes is proved using Laurent polynomial method. Keywordsternary subdivision; Lagrange polynomial; variation of constant
利用常数变分构造2n-1点三元插值细分格式
基于拉格朗日多项式和常数的变化,我们设计了一种新的2n-1点插值三元细分方案,再现了2n-2次多项式。我们用一个3点三元插值细分方案和一个新的5点三元插值细分方案来说明该技术,该方案可以重建Hassan和Dodgson的插值3点三元细分方案,并可以实现c -连续性。利用洛朗多项式方法证明了新方案的平滑性。Keywordsternary细分;拉格朗日多项式;常数变化
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信