Improving Empirical Mode Decomposition based on up-sampling

Jialing Mo, Weiping Hu, Shasha Le
{"title":"Improving Empirical Mode Decomposition based on up-sampling","authors":"Jialing Mo, Weiping Hu, Shasha Le","doi":"10.1109/ICIS.2014.6912171","DOIUrl":null,"url":null,"abstract":"The paper proposes an improved Empirical Mode Decomposition method based on up-sampling, due to the energy leakage in traditional Empirical Mode Decomposition for insufficient sampling rate(digital domain frequency greater than 0.2). The method uses the signal interpolation to improve sampling rate before EMD, and then recovers the original scale by corresponding down-sampling and low pass filtering. The numerical results show that it can partly recover the accurate position of extreme points and effectively reduce the energy leakage. Three typical interpolations are also employed and the result shows that the effect of using cubic spline interpolation with 4 times is the best relatively.","PeriodicalId":237256,"journal":{"name":"2014 IEEE/ACIS 13th International Conference on Computer and Information Science (ICIS)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE/ACIS 13th International Conference on Computer and Information Science (ICIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIS.2014.6912171","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The paper proposes an improved Empirical Mode Decomposition method based on up-sampling, due to the energy leakage in traditional Empirical Mode Decomposition for insufficient sampling rate(digital domain frequency greater than 0.2). The method uses the signal interpolation to improve sampling rate before EMD, and then recovers the original scale by corresponding down-sampling and low pass filtering. The numerical results show that it can partly recover the accurate position of extreme points and effectively reduce the energy leakage. Three typical interpolations are also employed and the result shows that the effect of using cubic spline interpolation with 4 times is the best relatively.
基于上采样改进的经验模态分解
针对传统经验模态分解方法在采样率不足(数字域频率大于0.2)时存在能量泄漏的问题,提出了一种改进的基于上采样的经验模态分解方法。该方法在EMD前利用信号插值提高采样率,然后通过相应的下采样和低通滤波恢复原始尺度。数值结果表明,该方法可以部分恢复极值点的精确位置,有效地减少能量泄漏。采用三种典型的插值方法,结果表明,采用四次三次样条插值的效果最好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信