Blind Quality Assessment of Tone-Mapped Images with Multi-scale Visual Feature Extraction Neural Network

Xiaomin Xu, M. Zhang, Jun Feng
{"title":"Blind Quality Assessment of Tone-Mapped Images with Multi-scale Visual Feature Extraction Neural Network","authors":"Xiaomin Xu, M. Zhang, Jun Feng","doi":"10.1109/ICSP51882.2021.9408691","DOIUrl":null,"url":null,"abstract":"To guarantee the quality of high dynamic range image (HDRI), various tone-mapped operators (TMOs) have been designed to display HDRI on traditional displays recently. Naturally, the image perceptual quality deteriorates seriously due to the inevitable distortions under different TMOs. In this paper, we propose a multi-scale visual feature extraction neural network for blind image quality assessment (BIQA) of TMIs. Specifically, hierarchical image decomposition is elaborately considered to mimic the hierarchical perception mechanism in the human visual system, expecting to better extract and fuse the multi scale features for quality prediction. Besides, under the proposed learning framework, the procedure of feature extraction, multi-scale feature fusion and quality prediction can be jointly optimized in an end-to-end manner. The experiments verify the stable performance of the proposed method on two public TMIs datasets.","PeriodicalId":117159,"journal":{"name":"2021 6th International Conference on Intelligent Computing and Signal Processing (ICSP)","volume":"74 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 6th International Conference on Intelligent Computing and Signal Processing (ICSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSP51882.2021.9408691","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

To guarantee the quality of high dynamic range image (HDRI), various tone-mapped operators (TMOs) have been designed to display HDRI on traditional displays recently. Naturally, the image perceptual quality deteriorates seriously due to the inevitable distortions under different TMOs. In this paper, we propose a multi-scale visual feature extraction neural network for blind image quality assessment (BIQA) of TMIs. Specifically, hierarchical image decomposition is elaborately considered to mimic the hierarchical perception mechanism in the human visual system, expecting to better extract and fuse the multi scale features for quality prediction. Besides, under the proposed learning framework, the procedure of feature extraction, multi-scale feature fusion and quality prediction can be jointly optimized in an end-to-end manner. The experiments verify the stable performance of the proposed method on two public TMIs datasets.
基于多尺度视觉特征提取神经网络的色调映射图像质量盲评价
为了保证高动态范围图像(HDRI)的质量,近年来人们设计了各种色调映射算子(TMOs)来在传统显示器上显示高动态范围图像。当然,在不同的TMOs下,由于不可避免的失真,图像的感知质量会严重下降。本文提出了一种多尺度视觉特征提取神经网络,用于tmi图像质量盲评估。具体而言,分层图像分解是为了模拟人类视觉系统中的分层感知机制,期望更好地提取和融合多尺度特征,用于质量预测。此外,在该学习框架下,特征提取、多尺度特征融合和质量预测过程可以端到端联合优化。实验验证了该方法在两个公共TMIs数据集上的稳定性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信