Minimizing algebraic error in geometric estimation problems

R. Hartley
{"title":"Minimizing algebraic error in geometric estimation problems","authors":"R. Hartley","doi":"10.1109/ICCV.1998.710760","DOIUrl":null,"url":null,"abstract":"This paper gives a widely applicable technique for solving many of the parameter estimation problems encountered in geometric computer vision. A commonly used approach is to minimize an algebraic error function instead of a possibly preferable geometric error function. It is claimed in this paper that minimizing algebraic error will usually give excellent results, and in fact the main problem with most algorithms minimizing algebraic distance is that they do not take account of mathematical constraints that should be imposed on the quantity being estimated. This paper gives an efficient method of minimizing algebraic distance while taking account of the constraints. This provides new algorithms for the problems of resectioning a pinhole camera, computing the fundamental matrix, and computing the tri-focal tensor. Evaluation results are given for the resectioning and tri-focal tensor estimation algorithms.","PeriodicalId":270671,"journal":{"name":"Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"87","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.1998.710760","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 87

Abstract

This paper gives a widely applicable technique for solving many of the parameter estimation problems encountered in geometric computer vision. A commonly used approach is to minimize an algebraic error function instead of a possibly preferable geometric error function. It is claimed in this paper that minimizing algebraic error will usually give excellent results, and in fact the main problem with most algorithms minimizing algebraic distance is that they do not take account of mathematical constraints that should be imposed on the quantity being estimated. This paper gives an efficient method of minimizing algebraic distance while taking account of the constraints. This provides new algorithms for the problems of resectioning a pinhole camera, computing the fundamental matrix, and computing the tri-focal tensor. Evaluation results are given for the resectioning and tri-focal tensor estimation algorithms.
几何估计问题中的代数误差最小化
本文给出了一种广泛适用的技术来解决几何计算机视觉中遇到的许多参数估计问题。一种常用的方法是最小化代数误差函数,而不是最小化可能更好的几何误差函数。本文声称,最小化代数误差通常会得到很好的结果,事实上,大多数最小化代数距离的算法的主要问题是它们没有考虑到应该施加在被估计数量上的数学约束。在考虑约束条件的情况下,给出了一种有效的代数距离最小化方法。这为针孔相机的剖分、基本矩阵的计算和三焦张量的计算等问题提供了新的算法。给出了三焦张量估计算法的评价结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信