Two

J. Fydrych
{"title":"Two","authors":"J. Fydrych","doi":"10.12987/9780300238648-003","DOIUrl":null,"url":null,"abstract":"We consider the quantum correlations, i.e. the entanglement, between two systems uniformly accelerated with identical acceleration a in opposite Rindler quadrants which have reached thermal equilibrium with the Unruh heat bath. To this end we study an exactly soluble model consisting of two oscillators coupled to a massless scalar field in 1+1 dimensions. We find that for some values of the parameters the oscillators get entangled shortly after the moment of closest approach. Because of boost invariance there are an infinite set of pairs of positions where the oscillators are entangled. The maximal entanglement between the oscillators is found to be approximately 1.4 entanglement bits.","PeriodicalId":335948,"journal":{"name":"Why Marx Was Right","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Why Marx Was Right","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12987/9780300238648-003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We consider the quantum correlations, i.e. the entanglement, between two systems uniformly accelerated with identical acceleration a in opposite Rindler quadrants which have reached thermal equilibrium with the Unruh heat bath. To this end we study an exactly soluble model consisting of two oscillators coupled to a massless scalar field in 1+1 dimensions. We find that for some values of the parameters the oscillators get entangled shortly after the moment of closest approach. Because of boost invariance there are an infinite set of pairs of positions where the oscillators are entangled. The maximal entanglement between the oscillators is found to be approximately 1.4 entanglement bits.
两个
我们考虑了两个系统之间的量子关联,即纠缠,在相反的伦德勒象限以相同的加速度a均匀加速,并与Unruh热浴达到热平衡。为此,我们研究了一个由两个振子耦合到1+1维的无质量标量场的完全可溶模型。我们发现,对于某些参数值,振子在最接近时刻后不久就会发生纠缠。由于升压不变性,存在无限对的振子纠缠位置。发现振子之间的最大纠缠约为1.4纠缠位。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信